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This paper is an introduction to an elegant and powerful technique in modern optics: Pound–
Drever–Hall laser frequency stabilization. This introduction is primarily meant to be conceptual, but
it includes enough quantitative detail to allow the reader to immediately design a real setup, suitable
for research or industrial application. The intended audience is both the researcher learning the
technique for the first time and the teacher who wants to cover modern laser locking in an
upper-level physics or electrical engineering course. ©2001 American Association of Physics Teachers.
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I. INTRODUCTION

Pound–Drever–Hall laser frequency stabilization is
powerful technique for improving an existing laser’s fr
quency stability,1,2 and it is an essential part of the techno
ogy of interferometric gravitational-wave detectors.3 The
technique has been used to demonstrate, using a comme
laser, a frequency standard as relatively stable as a puls4,5

The physical basis of the Pound–Drever–Hall techniq
has a broad range of applications in addition to gravitation
wave detection. A closely related technique is employed
atomic physics, where it goes by the name frequen
modulation~fm! spectroscopy and is used for probing optic
resonances.~See, for example, Refs. 6–8. Both techniqu
are similar to an older method used in microwave appli
tions, invented in the forties by R. V. Pound.9! The concep-
tual foundations of fm spectroscopy and Pound–Drev
Hall laser locking are quite similar. If you can understa
one, you will have a good handle on the other.

The idea behind the Pound–Drever–Hall method is sim
in principle: A laser’s frequency is measured with a Fabr
Perot cavity, and this measurement is fed back to the lase
suppress frequency fluctuations. The measurement is m
using a form of nulled lock-in detection, which decouples t
frequency measurement from the laser’s intensity. An ad
tional benefit of this method is that the system is not limit
by the response time of the Fabry–Perot cavity. You c
measure, and suppress, frequency fluctuations that o
faster than the cavity can respond.

The technique is both simple and powerful; it can
taught in an advanced undergraduate laboratory course10 It
is my hope that this paper will provide a clear concept
introduction to the Pound–Drever–Hall method. I am goi
to try and demonstrate both the physical basis of the te
nique and its fundamental limitations. I also hope that a m
widespread understanding of the technique will stimul
further development of laser frequency stabilization~and
perhaps fm spectroscopy! in general.

In this paper I am going to focus on the frequency m
surement, also called theerror signal. That is really the hear
of the technique, and it is often the point of maximum co
fusion when one first encounters it. The frequency meas
ment is also an essential part of fm spectroscopy, and a g
understanding of it will get the reader off to a good start
that field as well.

In this paper I will assume that the reader is already
miliar with Fabry–Perot cavities as they would be covered
a good introductory optics course.~See, for example, Refs
11 and 12.! For some very good comprehensive introducto
79 Am. J. Phys.69 ~1!, January 2001 http://ojps.aip.org
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materials on both control theory and Fabry–Perot cavit
see Refs. 13–17. An excellent introduction to interferome
gravitational-wave detectors is Ref. 18.

II. A CONCEPTUAL MODEL

Suppose we have a laser that we want to use for so
experiment, but we need better frequency stability than
laser provides ‘‘out of the box.’’ Many modern lasers a
tuneable: They come with some input port into which y
can feed an electrical signal and adjust the output freque
If we have an accurate way to measure the laser’s freque
then we can feed this measurement into the tuning port, w
appropriate amplification and filtering, to hold the frequen
~roughly! constant.

One good way to measure the frequency of a laser’s be
is to send it into a Fabry–Perot cavity and look at what g
transmitted~or reflected!. Recall that light can only pas
through a Fabry–Perot cavity if twice the length of the cav
is equal to an integer number of wavelengths of the lig
Another way to say this is that the frequency of the ligh
electromagnetic wave must be an integer number times
cavity’s free spectral rangeDn fsr[c/2L, where L is the
length of the cavity andc is the speed of light. The cavity
acts as a filter, with transmission lines, or resonances, sp
evenly in frequency every free spectral range. Figure
shows a plot of the fraction of light transmitted through
Fabry–Perot cavity versus the frequency of the light.

If we were to operate just to one side of one of the
resonances, but near enough that some light gets transm
~say, half the maximum transmitted power!, then a small
change in laser frequency would produce a proportio
change in the transmitted intensity. We could then meas
the transmitted intensity of the light and feed this signal ba
to the laser to hold this intensity~and hence the laser fre
quency! constant.

This was often how laser locking was done before
development of the Pound–Drever–Hall method, and it s
fers from a few flaws, one of which is that the system can
distinguish between fluctuations in the laser’s frequen
which changes the intensity transmitted through the cav
and fluctuations in the intensity of the laser itself.

We could build a separate system to stabilize the las
intensity, which was done with some success in the ea
seventies,19 but a better method would be to measure t
reflected intensity and hold that at zero, which would d
couple intensity and frequency noise. The only problem w
this scheme is that the intensity of the reflected beam is s
metric about resonance. If the laser frequency drifts out
79/ajp/ © 2001 American Association of Physics Teachers
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resonance with the cavity, you can’t tell just by looking
the reflected intensity whether the frequency needs to be
creased or decreased to bring it back onto resonance.
derivative of the reflected intensity, however, is antisymm
ric about resonance. If we were to measure this derivat
we would have an error signal that we can use to lock
laser. Fortunately, this is not too hard to do: We can just v
the frequency a little bit and see how the reflected be
responds.

Above resonance, the derivative of the reflected inten
with respect to laser frequency is positive. If we vary t
laser’s frequency sinusoidally over a small range, then
reflected intensity will also vary sinusoidally, in phase w
the variation in frequency.~See Fig. 2.!

Below resonance, this derivative is negative. Here the
flected intensity will vary 180° out of phase from the fr
quency. On resonance the reflected intensity is at a m
mum, and a small frequency variation will produce
change in the reflected intensity.

By comparing the variation in the reflected intensity w
the frequency variation we can tell which side of resona
we are on. Once we have a measure of the derivative of
reflected intensity with respect to frequency, we can feed
measurement back to the laser to hold it on resonance.
purpose of the Pound–Drever–Hall method is to do just t
Figure 3 shows a basic setup. Here the frequency is mo
lated with a Pockels cell,20 driven by some local oscillator
The reflected beam is picked off with an optical isolator~a
polarizing beamsplitter and a quarter-wave plate make
good isolator! and sent into a photodetector, whose outpu

Fig. 1. Transmission of a Fabry–Perot cavity vs frequency of the incid
light. This cavity has a fairly low finesse, about 12, to make the structur
the transmission lines easy to see.
80 Am. J. Phys., Vol. 69, No. 1, January 2001
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compared with the local oscillator’s signal via a mixer. W
can think of a mixer as a device whose output is the prod
of its inputs, so this output will contain signals at both dc~or
very low frequency! and twice the modulation frequency.
is the low frequency signal that we are interested in, sin
that is what will tell us the derivative of the reflected inte
sity. A low-pass filter on the output of the mixer isolates th
low frequency signal, which then goes through a servo a
plifier and into the tuning port on the laser, locking the las
to the cavity.

The Faraday isolator shown in Fig. 3 keeps the reflec
beam from getting back into the laser and destabilizing
This isolator is not necessary for understanding the te
nique, but it is essential in a real system. In practice,
small amount of reflected beam that gets through the opt
isolator is usually enough to destabilize the laser. Simila
the phase shifter is not essential in an ideal system bu
useful in practice to compensate for unequal delays in
two signal paths.~In our example, it could just as easily g
between the local oscillator and the Pockels cell.!

This conceptual model is really only valid if you are dith
ering the laser frequency slowly. If you dither the frequen
too fast, the light resonating inside the cavity won’t ha
time to completely build up or settle down, and the outp
will not follow the curve shown in Fig. 2. However, th
technique still works at higher modulation frequencies, a
both the noise performance and bandwidth of the servo
typically improved. Before we address a conceptual pict
that does apply to the high-frequency regime, we must es
lish a quantitative model.

t
f

Fig. 2. The reflected light intensity from a Fabry–Perot cavity as a funct
of laser frequency, near resonance. If you modulate the laser frequency
can tell which side of resonance you are on by how the reflected po
changes.
l
hs.
s

Fig. 3. The basic layout for locking a
cavity to a laser. Solid lines are optica
paths and dashed lines are signal pat
The signal going to the laser control
its frequency.
80Eric D. Black
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III. A QUANTITATIVE MODEL

A. Reflection of a monochromatic beam from a Fabry–
Perot cavity

To describe the behavior of the reflected beam quan
tively, we can pick a point outside the cavity and meas
the electric field over time. The magnitude of the elect
field of the incident beam can be written

Einc5E0eivt.

The electric field of the reflected beam~measured at the sam
point! is

Eref5E1eivt.

We account for the relative phase between the two wave
letting E0 and E1 be complex. Thereflection coefficient
F(v) is the ratio ofEref andEinc , and for a symmetric cavity
with no losses it is given by

F~v!5Eref /Einc5

r S expS i
v

Dn fsr
D21D

12r 2expS i
v

Dn fsr
D , ~3.1!

wherer is the amplitude reflection coefficient of each mirro
and Dn fsr5c/2L is the free spectral range of the cavity
lengthL.

The beam that reflects from a Fabry–Perot cavity is ac
ally the coherent sum of two different beams: thepromptly
reflected beam, which bounces off the first mirror and neve
enters the cavity; and aleakage beam, which is the small part
of the standing wave inside the cavity that leaks ba
through the first mirror, which is never perfectly reflectin
These two beams have the same frequency, and near
nance~for our lossless, symmetric cavity! their intensities are
almost the same as well. Their relative phase, however,
pends strongly on the frequency of the laser beam.

If the cavity is resonating perfectly, i.e., the laser’s fr
quency is exactly an integer multiple of the cavity’s fr
spectral range, then the promptly reflected beam and
leakage beam have the same amplitude and are exactly
out of phase. In this case the two beams interfere dest
tively, and the total reflected beam vanishes.

If the cavity is not quite perfectly resonant, that is, t
laser’s frequency is not exactly an integer multiple of the f
spectral range but close enough to build up a standing w
then the phase difference between the two beams will no
exactly 180°, and they will not completely cancel each ot
out. ~Their intensities will still be about the same.! Some
light gets reflected off the cavity, and its phase tells y
which side of resonance your laser is on. Figure 4 show
plot of the intensity and phase of the reflection coefficie
around resonance.

We will find it useful to look at the properties ofF(v) in
the complex plane.~See Fig. 5.! It is not too hard to show
~see Appendix A! that the value ofF always lies on a circle
in the complex plane, centered on the real axis, withv being
the parameter that determines where on this circleF will be.
uF(v)u2 gives the intensity of the reflected beam, and it
given by the familiar Airy function.F is symmetric around
resonance, but its phase is different depending on whe
the laser’s frequency is above or below the cavity’s re
nance. Asv increases,F advances counterclockwise aroun
the circle. For the symmetric, lossless cavity we are con
81 Am. J. Phys., Vol. 69, No. 1, January 2001
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ering, this circle intersects the origin, withF50 on reso-
nance. Very near resonance,F is nearly on the imaginary
axis, being in the lower half plane below resonance and
the upper half plane above resonance.

We will use this graphical representation ofF in the com-
plex plane when we try to understand the results of our qu
titative model.

Fig. 4. Magnitude and phase of the reflection coefficient for a Fabry–P
cavity. As in Fig. 1, the finesse is about 12. Note the discontinuity in pha
caused by the reflected power vanishing at resonance.

Fig. 5. The reflection coefficient in the complex plane. As the laser
quency ~or equivalently, the cavity length! increases,F(v) traces out a
circle ~counterclockwise!. Most of the time,F is near the real axis at the lef
edge of the circle. Only near resonance does the imaginary part ofF become
appreciable. Exactly on resonance,F is zero.
81Eric D. Black
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B. Measuring the phase of the reflected beam

To tell whether the laser’s frequency is above or below
cavity resonance, we need to measure the phase of th
flected beam. We do not, as of this writing, know how
build electronics that can directly measure the electric fi
~and hence the phase! of a light wave, but the Pound–
Drever–Hall method~and fm spectroscopy! provides us with
a way of indirectly measuring the phase.

Our conceptual model suggests that if we dither the
quency of the laser, that will give us enough information
tell which side of resonance we are on. A more quantitat
way of thinking about this frequency dither is this: Modula
ing the laser’s frequency~or phase! will generate sideband
with a definite phase relationship to the incident and reflec
beams. These sidebands will not be at the same frequen
the incident and reflected beams, but a definite phase rela
will be there nonetheless. If we interfere these sideba
with the reflected beam, the sum will display a beat patter
the modulation frequency, and we can measure the phas
this beat pattern. The phase of this beat pattern will tell
the phase of the reflected beam. The sidebands effectivel
a phase standard with which we can measure the phase o
reflected beam.

C. Modulating the beam: Sidebands

I talked about varying the frequency of this beam in t
qualitative model, but in practice it is easier to modulate
phase. The results are essentially the same, but the math
describes phase modulation is simpler than the math for
quency modulation. Phase modulation is also easy to im
ment with a Pockels cell, as shown in Fig. 3. After the be
has passed through the Pockels cell, its electric field ha
phase modulated and becomes

Einc5E0ei ~vt1b sin Vt !.

We can expand this expression, using Bessel functions,21

Einc'@J0~b!12iJ1~b!sinVt#eivt

5E0@J0~b!eivt1J1~b!ei ~v1V!t2J1~b!ei ~v2V!t#.

~3.2!

I have written it in this form to show that there are actua
three different beams incident on the cavity: a carrier, w
~angular! frequencyv, and two sidebands with frequencie
v6V. Here,V is the phase modulation frequency andb is
known as the modulation depth. IfP0[uE0u2 is the total
power in the incident beam, then the power in the carrie
~neglecting interference effects for now!

Pc5J0
2~b!P0 ,

and the power in each first-order sideband is

Ps5J1
2~b!P0 .

When the modulation depth is small (b,1), almost all of
the power is in the carrier and the first-order sidebands,

Pc12Ps'P0 .

D. Reflection of a modulated beam: The error signal

To calculate the reflected beam’s field when there are s
eral incident beams, we can treat each beam independ
and multiply each one by the reflection coefficient at t
82 Am. J. Phys., Vol. 69, No. 1, January 2001
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appropriate frequency. In the Pound–Drever–Hall set
where we have a carrier and two sidebands, the total
flected beam is

Eref5E0@F~v!J0~b!eivt1F~v1V!J1~b!ei ~v1V!t

2F~v2V!J1~b!ei ~v2V!t#.

What we really want is the power in the reflected bea
since that is what we measure with the photodetector. Th
just Pref5uErefu2, or after some algebra

Pref5PcuF~v!u21Ps$uF~v1V!u21uF~v2V!u2%

12APcPs$Re@F~v!F* ~v1V!

2F* ~v!F~v2V!#cosVt1Im@F~v!F* ~v1V!

2F* ~v!F~v2V!#sinVt%1~2V terms!. ~3.3!

We have added three waves of different frequencies,
carrier, atv, and the upper and lower sidebands atv6V.
The result is a wave with a nominal frequency ofv, but with
an envelope displaying a beat pattern with two frequenc
The V terms arise from the interference between the car
and the sidebands, and the 2V terms come from the side
bands interfering with each other.22

We are interested in the two terms that are oscillating
the modulation frequencyV because they sample the pha
of the reflected carrier. There are two terms in this expr
sion: a sine term and a cosine term. Usually, only one
them will be important. The other will vanish. Which on
vanishes and which one survives depends on the modula
frequency. In the next section we will show that at lo
modulation frequencies~slow enough for the internal field o
the cavity to have time to respond, orV!Dn fsr /F!,
F(v)F* (v1V)2F* (v)F(v2V) is purely real, and only
the cosine term survives. At highV(V@Dn fsr /F) near reso-
nance it is purely imaginary, and only the sine term is i
portant.

In either case ~high or low V! we will measure
F(v)F* (v1V)2F* (v)F(v2V) and determine the lase
frequency from that.

E. Measuring the error signal

We measure the reflected power given in Eq.~3.3! with a
high-frequency photodetector, as shown in Fig. 3. The out
of this photodetector includes all terms in Eq.~3.3!, but we
are only interested in the sin(Vt) or cos(Vt) part, which we
isolate using a mixer and a low-pass filter. Recall tha
mixer forms the product of its inputs, and that the product
two sine waves is

sin~Vt !sin~V8t !5 1
2$cos@~V2V8!t#2cos@~V1V8!t#%.

If we feed the modulation signal~at V! into one input of
the mixer and some other signal~at V8! into the other input,
the output will contain signals at both the sum (V1V8) and
difference (V2V8) frequencies. IfV8 is equal toV, as is
the case for the part of the signal we are interested in, t
the cos@(V2V8)t# term will be a dc signal, which we can
isolate with a low-pass filter, as shown in Fig. 3.

Note that if we mix a sine and a cosine signal, rather th
two sines, we get

sin~Vt !cos~V8t !5 1
2$sin@~V2V8!t#2sin@~V1V8!t#%.
82Eric D. Black
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In this case, ifV5V8 our dc signal vanishes! If we want t
measure the error signal when the modulation frequenc
low we must match the phases of the two signals going
the mixer. Turning a sine into a cosine is a simple matte
introducing a 90° phase shift, which we can do with a ph
shifter ~or delay line!, as shown in Fig. 3.

In practice, you need a phase shifter even when the mo
lation frequency is high. There are almost always uneq
delays in the two signal paths that need to be compens
for to produce two pure sine terms at the inputs of the mix
The output of the mixer when the phases of its two inputs
not matched can produce some odd-looking error sign
~see Bjorklund7!, and when setting up a Pound–Drever–H
lock you usually scan the laser frequency and empirica
adjust the phase in one signal path until you get an e
signal that looks like Fig. 7.

IV. UNDERSTANDING THE QUANTITATIVE
MODEL

A. Slow modulation: Quantifying the conceptual model

Let’s see how the quantitative model compares with
conceptual model, where we slowly dithered the laser
quency and looked at the reflected power. For our ph
modulated beam, the instantaneous frequency is

v~ t !5
d

dt
~vt1b sinVt !5v1Vb cosVt.

The reflected power is justPref5P0uF(v)u2, and we
might expect it to vary over time as

Pref~v1Vb cosVt !'Pref~v!1
dPref

dv
Vb cosVt

'Pref~v!1P0

duFu2

dv
Vb cosVt.

In the conceptual model, we dithered the frequency of
laser adiabatically, slowly enough that the standing wave
side the cavity was always in equilibrium with the incide
beam. We can express this in the quantitative model by m
ing V very small. In this regime the expression

Fig. 6. The Pound–Drever–Hall error signal,e/2APcPs vs v/Dn fsr , when
the modulation frequency is low. The modulation frequency is about ha
linewidth: about 1023 of a free spectral range, with a cavity finesse of 50
83 Am. J. Phys., Vol. 69, No. 1, January 2001
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F~v!F* ~v1V!2F* ~v!F~v2V!

'2 ReH F~v!
d

dv
F* ~v!J V'

duFu2

dv
V,

which is purely real. Of theV terms, only the cosine term in
Eq. ~3.3! survives.

If we approximateAPcPs'P0b/2, the reflected power
from Eq. ~3.3! becomes

Pref'~constant terms!1P0

duFu2

dv
Vb cosVt

1~2V terms!,

in agreement with our expectation from the concept
model.

The mixer will filter out everything but the term that va
ies as cosVt. ~We may have to adjust the phase of the sig
before we feed it into the mixer.! The Pound–Drever–Hal
error signal is then

e5P0

duFu2

dv
Vb'2APcPs

duFu2

dv
V.

Figure 6 shows a plot of this error signal.

B. Fast modulation near resonance: Pound–Drever–
Hall in practice

When the carrier is near resonance and the modula
frequency is high enough that the sidebands are not, we
assume that the sidebands are totally reflected,F(v6V)
'21. Then the expression

F~v!F* ~v1V!2F* ~v!F~v2V!'2 i2 Im$F~v!%,
~4.1!

is purely imaginary. In this regime, the cosine term in E
~3.3! is negligible, and our error signal becomes

e522APcPs Im$F~v!F* ~v1V!2F* ~v!F~v2V!%.

Figure 7 shows a plot of this error signal.
Near resonance the reflected power essentially vanis

sinceuF(v)u2'0. We do want to retain terms to first order
F(v), however, to approximate the error signal,

Pref'2Ps24APcPs Im$F~v!%sinVt1~2V terms!.

a
.

Fig. 7. The Pound–Drever–Hall error signal,e/2APcPs vs v/Dn fsr , when
the modulation frequency is high. Here, the modulation frequency is ab
20 linewidths: roughly 4% of a free spectral range, with a cavity finesse
500.
83Eric D. Black
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Since we are near resonance we can write

v

Dn fsr
52pN1

dv

Dn fsr
,

whereN is an integer anddv is the deviation of the lase
frequency from resonance. It is useful at this point to ma
the approximation that the cavity has a high finesseF
'p/(12r 2). The reflection coefficient is then

F'
i

p

dv

dn
,

wheredn[Dn fsr /F is the cavity’s linewidth. The error sig
nal is then proportional todv, and this approximation is
good as long asdv!dn,

e'2
4

p
APcPs

dv

dn
.

That the error signal is linear near resonance allows u
use the standard tools of control theory to suppress freque
noise. We will use this linear behavior later on to exam
some fundamental noise limits. It will be useful for us
write the error signal in terms of the regular frequencyf
5v/2p, instead ofv, and define the proportionality consta
betweene andd f ,

e5Dd f ,

where the proportionality constant,

D[2
8APcPs

dn
, ~4.2!

is called the frequency discriminant.

C. A conceptual model good for high modulation
frequency

When the modulation frequency was low, we could p
ture the reflected power in the time domain and compar
with the modulation of the laser. At high modulation fr
quencies, we can still conceptualize the technique, but
will have to be a bit more subtle.

Fig. 8. Sidebands atv6V.
84 Am. J. Phys., Vol. 69, No. 1, January 2001
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We can represent the electric fields of each beam by ti
varying vectors in a complex plane that rotates along w
the carrier at frequencyv. We can choose this ‘‘moving
reference frame’’ such that the incident carrier’s electric fie
component always lies along the real axis. The part of
carrier that gets reflected from the Fabry–Perot cavity is a
represented by a vector in this plane, as shown in Fig. 5,
near resonance it is given by

Ecarrier' iAPc

dv

pdn
.

The sidebands have different frequencies than the car
so they are represented by vectors that spin around in
reference frame. The upper (v1V) sideband has a highe
frequency than the carrier, so its vector rotates counterclo
wise in the plane with angular frequencyV. The lower side-

Fig. 9. The sum of the two sidebands shown in Fig. 8. This is the ac
electric field produced when the two sidebands interfere with each ot
Note that the intensity oscillates at 2V.

Fig. 10. Sidebands and the reflected carrier near resonance. The actu
flected beam is the coherent sum of these two fields. The small refle
carrier introduces an asymmetry in the intensity over its 2V period, which
produces a component that varies atV. This V component is the beat signa
between the carrier and the sidebands, and its sign tells you whether yo
above resonance or below it.
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band has a lower frequency and rotates clockwise at2V.
~See Fig. 8.! The sum of the two sidebands, when they a
both completely reflected off the cavity, is a single vec
that oscillates up and down along the imaginary axis.~See
Fig. 9.! This field is given by@see Eq.~3.2!#

Esidebands52 i2APs sinVt.

The total field reflected off the cavity is the vector sum
the reflected carrier and the two sidebands.~See Fig. 10.! We
measure the intensity of this field with the photodetector, a
that is just the magnitude~squared! of the total field,

Pref5uEcarrier1Esidebandsu2

'PcS dv

pdn D 2

12Ps24APcPs

dv

pdn
sinVt

22Ps cos 2Vt.

The cross term proportional to sinVt represents the bea
ing of the sidebands with the reflected carrier, and its s
tells you which side of resonance you are on. The 2V term is
the result of the two sidebands beating together.

Now we are in a position to understand why the er
signal is not limited by the bandwidth of the cavity. Whe
ever there is a phase mismatch between the promptly
flected field and the leakage field, we get an error signal.
very fast changes in the frequency of the incident~and
promptly reflected! beam, the leakage beam acts as a sta
reference, averaging both the frequency and the phase o
laser over the storage time of the cavity.2 If the promptly
reflected beam~which provides an effectively instantaneo
measure of the incident beam! ‘‘hiccups,’’ i.e., jumps away
from this average, the error signal will immediately regis
this jump, and the feedback loop can compensate for it.
are effectively locking the laser to a time average of its
over the storage time of the cavity.

V. NOISE AND FUNDAMENTAL LIMITS: HOW
WELL CAN YOU DO?

A. Noise in various parameters

I have only talked about laser frequency so far, but it i
straightforward exercise to extend this analysis in terms
both frequency and cavity length. A little algebra shows t
the laser frequency and the cavity length are on equal f
ings near resonance. For high modulation frequencies,

e528APcPs

2LF
l H d f

f
1

dL

L J ,

where dL is the deviation of the cavity length from reso
nance, analogous tod f . All along I have been talking abou
measuring the frequency noise of the laser and locking it
quiet cavity, but we could have just as easily measured
length noise in the cavity~provided the laser was relativel
quiet! and locked the cavity to the laser.

Note that it is not possible to distinguish laser frequen
noise from cavity noise just by looking at the error sign
One naturally wonders what other noise sources contribut
the error signal. It is a straightforward exercise to show t
none of the following contribute to the error signal to fir
order: variation in the laser power, response of the photo
ode used to measure the reflected signal, the modula
depthb, the relative phase of the two signals going into t
mixer, and the modulation frequencyV. The system is in-
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sensitive to each of these because we are locking on r
nance, where the reflected carrier vanishes. This causes
these first-order terms to vanish in a Taylor expansion of
error signal about resonance.~A good treatment of optically
related noise sources in a gravitational-wave detector ca
found in Ref. 23.!

The system is first-order sensitive to fluctuations in t
sideband power at the modulation frequencyV. Most noise
sources fall off as frequency increases, so we can usu
reduce them as much as we want by going to a high eno
modulation frequency. There is one noise source, howe
that does not trail off at high frequencies, and that is the s
noise in the reflected sidebands. Shot noise has a flat s
trum, and for high enough modulation frequencies it is t
dominant noise source.

B. Shot noise limited resolution

Any noise in the error signal itself is indistinguishab
from noise in the laser’s frequency. There is a fundamen
limit to how quiet the error signal can be, due to the quant
nature of light.24

On resonance, the reflected carrier will vanish, and o
the sidebands will reflect off the cavity and fall on the ph
todetector. These sidebands will produce a signal that os
lates at harmonics of the modulation frequency. Calculat
the shot noise in such a cyclostationary signal is fai
subtle,25 but for our purposes we may estimate it by repla
ing this cyclostationary signal with an averaged, dc sign
The average power falling on the photodiode is appro
mately Pref52Ps . The shot noise in this signal has a fl
spectrum with spectral density of

Se5A2
hc

l
~2Ps!.

Dividing the error signal spectrum byD gives us the appar
ent frequency noise,

Sf5
Ahc3

8

1

FLAlPc

.

Since you can’t resolve the frequency any better than t
you can’t get it any more stable than this by using feedb
to control the laser. Note that the shot noise limit does
explicitly depend on the power in the sidebands, as y
might expect. It only depends on the power in the carrier26

It’s worth putting in some numbers to get a feel for the
limits. For this example we will use a cavity that is 20 c
long and has a finesse of 104, and a laser that operates at 50
mW with a wavelength of 1064 nm. If the cavity had n
length noise and we locked the laser to it, the best freque
stability we could get would be

Sf5S 1.231025
Hz

AHz
D 104

F
20 cm

L
A1064 nm

l

500 mW

Pc
.

The same shot noise would limit your sensitivity to cav
length if you were locking the cavity to the laser. In th
case, the apparent length noise would be

SL5
L

f
Sf5

Ahc

8

Al

FAPc

. ~5.1!

For the example cavity and laser we used above, this wo
be
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APPENDIX A: A PROOF OF THE CIRCLE
THEOREM

For the general case of a Fabry–Perot cavity with lo
mirrors, the reflection coefficient is

F5

2r 11r 2~r 1
21t1

2!expS i
v

Dn fsr
D

12r 1r 2expS i
v

Dn fsr
D .

Here,r 1 andt1 are the amplitude reflection and transmissi
coefficients of the input mirror, andr 2 is the amplitude re-
flection coefficient of the end mirror.~Note that the reflection
coefficient does not depend on the transmission of the
mirror!! It is straightforward algebra to show thatF satisfies
the equation of a circle:

uF~v!2Z0u25R2

for all v. Z0 andR are both real and are given by

Z052
r 1

12r 1
2r 2

2 @12r 2
2~r 1

21t1
2!#

and

R5
t1
2r 2

12r 1
2r 2

2 .

Fig. 11. Plots ofF in the complex plane for various couplings. Only for th
impedance matched case does the reflected intensity vanish on reson
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If this circle intersects the origin~i.e., the reflected intensity
vanishes on resonance! then the cavity is said to becritically
coupled. The requirement for critical coupling is thatR
5uZ0u, or

r 1@12r 2
2~r 1

21t1
2!#5t1

2r 2 . ~A1!

Our lossless, symmetric cavity hadr 15r 2[r , t15t2[t,
r 21t251, and satisfied the conditions for critical couplin
A lossy, asymmetric cavity can also be critically couple
provided its mirror parameters satisfy Eq.~A1!, which can be
rewritten as

r 25
t1
21At1

414r 1
2~r 1

21t1
2!

2r 1~r 1
21t1

2!
.

Other cases, known as undercoupling and overcoupl
are illustrated along with critical coupling in Fig. 11. Ove
coupling plays a central role in interferometric gravitation
wave detectors and can be achieved by making the end
ror much more reflective than the near mirror (t2!t1).

APPENDIX B: OPTIMUM MODULATION DEPTH

It is sometimes useful to maximize the slope of the er
signal D @recall Eq. ~4.2!#. This slope is a measure of th
sensitivity of the error signal to fluctuations in the laser fr
quency~or cavity length!. One example of when you migh
need a high sensitivity in this discriminant is if you need
large gain in the feedback loop.

The discriminantD depends on the cavity finesse, the las
wavelength, and the power in the sidebands and the car
Experimental details usually restrict your finesse and wa
length choices, but you often have quite a bit of freedom
adjusting the sideband power. The question I want to add
in this section is this: How doesD depend on the sideban
power?

D is proportional to the square root of the product of t
sideband and carrier power.@See Eq.~4.2!.# This has a very
simple form when Pc12Ps'P0 , i.e., when negligible
power goes into the higher order sidebands,

D}APcPs'AP0

2
AS 12

Pc

P0
D Pc

P0
.

A plot of D in this approximation againstPc /P0 traces out
the top half of a circle, with a maximum atPc /P051/2. ~See
Fig. 12.! It is useful to express the power in the sideban

ce.

Fig. 12. An approximate plot ofD, the slope of the error signal near res
nance, vsPs /Pc . The optimum value is atPs /Pc51/2, and the maximum
is very broad.
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relative to the power in the carrier, and this gives

Ps

Pc
5

1

2
.

D is maximized when the power in each sideband is half
power in the carrier, and this maximum is fairly broad.

If you want do a more careful analysis, writeD in terms of
the Bessel functions of the modulation depth and find
maximum. You’ll find the optimum modulation depth to b
b51.08, and you’ll come up with essentially the same a
swer as with the simple estimate:

Ps

Pc
50.42.
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GRAND CANYON BOATWOMAN

Lorna @Corson# rows gracefully and likes being in control. Her least-favorite rapid is unpre-
dictable Granite. ‘‘It’s sloppy, there’s no finesse.’’ Lorna’s favorite rapid is Deubendorff at low
water, when you have to make an exact entry or risk smashing into black fang rocks disguised as
foam at the bottom. ‘‘I love reading the water, estimating what you think it will do, getting your
angles right, and finding out how close your calculations were—just the physics of water.’’

Louise Teal,Breaking into the Current: Boatwoman of the Grand Canyon~University of Arizona Press, Tucson, 1994!, p.
130.
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