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This paper is an introduction to an elegant and powerful technique in modern optics: Pound—
Drever—Hall laser frequency stabilization. This introduction is primarily meant to be conceptual, but
it includes enough quantitative detail to allow the reader to immediately design a real setup, suitable
for research or industrial application. The intended audience is both the researcher learning the
technique for the first time and the teacher who wants to cover modern laser locking in an
upper-level physics or electrical engineering course. 2001 American Association of Physics Teachers.
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[. INTRODUCTION materials on both control theory and Fabry—Perot cavities,
see Refs. 13—17. An excellent introduction to interferometric

Pound—Drever—Hall laser frequency stabilization is agravitational-wave detectors is Ref. 18.
powerful technicLue for improving an existing laser’s fre-
quency stability;* and it is an essential part of the technol- ||. A CONCEPTUAL MODEL
ogy of interferometric gravitational-wave detectdrdhe
technique has been used to demonstrate, using a commercialSuppose we have a laser that we want to use for some
laser, a frequency standard as relatively stable as a ptisar.experiment, but we need better frequency stability than the
The physical basis of the Pound—Drever—Hall techniqudaser provides “out of the box.” Many modern lasers are
has a broad range of applications in addition to gravitationaltuneable: They come with some input port into which you
wave detection. A closely related technique is employed ircan feed an electrical signal and adjust the output frequency.
atomic physics, where it goes by the name frequency!f we have an accurate way to measure the laser’s frequency,
modulation(fm) spectroscopy and is used for probing opticalthen we can feed this measurement into the tuning port, with
resonances(See, for example, Refs. 6—8. Both techniquesappropriate amplification and filtering, to hold the frequency
are similar to an older method used in microwave applica{roughly) constant.
tions, invented in the forties by R. V. PoufdThe concep- One good way to measure the frequency of a laser's beam
tual foundations of fm spectroscopy and Pound—Drever-s to send it into a Fabry—Perot cavity and look at what gets
Hall laser locking are quite similar. If you can understandtransmitted(or reflected. Recall that light can only pass
one, you will have a good handle on the other. through a Fabry—Perot cavity if twice the length of the cavity
The idea behind the Pound—Drever—Hall method is simplds equal to an integer number of wavelengths of the light.
in principle: A laser’s frequency is measured with a Fabry—Another way to say this is that the frequency of the light's
Perot cavity, and this measurement is fed back to the laser ®lectromagnetic wave must be an integer number times the
suppress frequency fluctuations. The measurement is madavity’s free spectral rangé v, =c/2L, whereL is the
using a form of nulled lock-in detection, which decouples thelength of the cavity and is the speed of light. The cavity
frequency measurement from the laser’s intensity. An addiacts as a filter, with transmission lines, or resonances, spaced
tional benefit of this method is that the system is not limitedevenly in frequency every free spectral range. Figure 1
by the response time of the Fabry—Perot cavity. You carshows a plot of the fraction of light transmitted through a
measure, and suppress, frequency fluctuations that occEabry—Perot cavity versus the frequency of the light.
faster than the cavity can respond. If we were to operate just to one side of one of these
The technique is both simple and powerful; it can beresonances, but near enough that some light gets transmitted
taught in an advanced undergraduate laboratory cdfiiée. (say, half the maximum transmitted powethen a small
is my hope that this paper will provide a clear conceptualchange in laser frequency would produce a proportional
introduction to the Pound—Drever—Hall method. | am goingchange in the transmitted intensity. We could then measure
to try and demonstrate both the physical basis of the techthe transmitted intensity of the light and feed this signal back
nique and its fundamental limitations. | also hope that a moréo the laser to hold this intensittand hence the laser fre-
widespread understanding of the technique will stimulatequency constant.
further development of laser frequency stabilizati@nd This was often how laser locking was done before the
perhaps fm spectroscopin general. development of the Pound—Drever—Hall method, and it suf-
In this paper | am going to focus on the frequency mea-fers from a few flaws, one of which is that the system cannot
surement, also called tegror signal That is really the heart distinguish between fluctuations in the laser’s frequency,
of the technique, and it is often the point of maximum con-which changes the intensity transmitted through the cavity,
fusion when one first encounters it. The frequency measureand fluctuations in the intensity of the laser itself.
ment is also an essential part of fm spectroscopy, and a good We could build a separate system to stabilize the laser’'s
understanding of it will get the reader off to a good start inintensity, which was done with some success in the early
that field as well. seventies? but a better method would be to measure the
In this paper | will assume that the reader is already fareflected intensity and hold that at zero, which would de-
miliar with Fabry—Perot cavities as they would be covered incouple intensity and frequency noise. The only problem with
a good introductory optics cours€See, for example, Refs. this scheme is that the intensity of the reflected beam is sym-
11 and 12. For some very good comprehensive introductorymetric about resonance. If the laser frequency drifts out of
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Fig. 2. The reflected light intensity from a Fabry—Perot cavity as a function

Fig. 1. Transmission of a Fabry—Perot cavity vs frequency of the incidenbf laser frequency, near resonance. If you modulate the laser frequency, you
light. This cavity has a fairly low finesse, about 12, to make the structure ofcan tell which side of resonance you are on by how the reflected power
the transmission lines easy to see. changes.

resonance with the cavity, you can't tell just by looking at compared with the local oscillator’'s signal via a mixer. We
the reflected intensity whether the frequency needs to be ircan think of a mixer as a device whose output is the product
creased or decreased to bring it back onto resonance. Thf its inputs, so this output will contain signals at both(dc
derivative of the reflected intensity, however, is antisymmetvery low frequency and twice the modulation frequency. It
ric about resonance. If we were to measure this derivatives the low frequency signal that we are interested in, since
we would have an error signal that we can use to lock thehat is what will tell us the derivative of the reflected inten-
laser. Fortunately, this is not too hard to do: We can just vansity. A low-pass filter on the output of the mixer isolates this
the frequency a little bit and see how the reflected beanfow frequency signal, which then goes through a servo am-
responds. plifier and into the tuning port on the laser, locking the laser
Above resonance, the derivative of the reflected intensityo the cavity.
with respect to laser frequency is positive. If we vary the The Faraday isolator shown in Fig. 3 keeps the reflected
laser’'s frequency sinusoidally over a small range, then théeam from getting back into the laser and destabilizing it.
reflected intensity will also vary sinusoidally, in phase with This isolator is not necessary for understanding the tech-
the variation in frequencySee Fig. 2. nique, but it is essential in a real system. In practice, the
Below resonance, this derivative is negative. Here the resmall amount of reflected beam that gets through the optical
flected intensity will vary 180° out of phase from the fre- isolator is usually enough to destabilize the laser. Similarly,
guency. On resonance the reflected intensity is at a minithe phase shifter is not essential in an ideal system but is
mum, and a small frequency variation will produce nouseful in practice to compensate for unequal delays in the
change in the reflected intensity. two signal paths(In our example, it could just as easily go
By comparing the variation in the reflected intensity with between the local oscillator and the Pockels tell.
the frequency variation we can tell which side of resonance This conceptual model is really only valid if you are dith-
we are on. Once we have a measure of the derivative of thering the laser frequency slowly. If you dither the frequency
reflected intensity with respect to frequency, we can feed thisoo fast, the light resonating inside the cavity won't have
measurement back to the laser to hold it on resonance. Thane to completely build up or settle down, and the output
purpose of the Pound—Drever—Hall method is to do just thiswill not follow the curve shown in Fig. 2. However, the
Figure 3 shows a basic setup. Here the frequency is moduechnique still works at higher modulation frequencies, and
lated with a Pockels ceff driven by some local oscillator. both the noise performance and bandwidth of the servo are
The reflected beam is picked off with an optical isolatar typically improved. Before we address a conceptual picture
polarizing beamsplitter and a quarter-wave plate makes that does apply to the high-frequency regime, we must estab-
good isolatoy and sent into a photodetector, whose output idish a quantitative model.
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[ll. A QUANTITATIVE MODEL 1.0
A. Reflection of a monochromatic beam from a Fabry- 0.8
Perot cavity >
To describe the behavior of the reflected beam quantita- & 0.6

tively, we can pick a point outside the cavity and measure = -
the electric field over time. The magnitude of the electric ‘
field of the incident beam can be written oo

Einc=Eoe'“".
The electric field of the reflected begmeasured at the same 0.6 0.8 1 1.2 1.4
point) is

E,e=E €.
We account for the relative phase between the two waves by 180
letting Eq and E; be complex. Thereflection coefficient K—’—‘
F(w) is the ratio ofE,s andE;,, and for a symmetric cavity 120
with no losses it is given by 60

1) ]
r(exr{lAstr)—l) £ 0.6 0.8 1 1.2 1.4
F(w):Eref/Einc: w y (31) -60
_r2 i
1-r exr<| Astr) -120 /J

wherer is the amplitude reflection coefficient of each mirror, -180

and A v, =c/2L is the free spectral range of the cavity of
lengthlL.

The beam that reflects from a Fabry—Perot cavity is acturig. 4. Magnitude and phase of the reflection coefficient for a Fabry—Perot
ally the coherent sum of two different beams: fiv@mptly  cavity. As in Fig. 1, the finesse is about 12. Note the discontinuity in phase,
reflected beamwhich bounces off the first mirror and never caused by the reflected power vanishing at resonance.
enters the cavity; andlaakage beamwhich is the small part
of the standing wave inside the cavity that leaks back
through the first mirror, which is never perfectly reflecting. ering, this circle intersects the origin, wifhi=0 on reso-
These two beams have the same frequency, and near resgance. Very near resonande,is nearly on the imaginary
nance(for our lossless, symmetric cavjttheir intensities are  axis, being in the lower half plane below resonance and in
almost the same as well. Their relative phase, however, deghe upper half plane above resonance.
pends strongly on the frequency of the laser beam. We will use this graphical representationfoin the com-

If the cavity is resonating perfectly, i.e., the laser's fre- pjex plane when we try to understand the results of our quan-
quency is exactly an integer multiple of the cavity’'s freejtative model.
spectral range, then the promptly reflected beam and the
leakage beam have the same amplitude and are exactly 180°
out of phase. In this case the two beams interfere destruc-
tively, and the total reflected beam vanishes.

If the cavity is not quite perfectly resonant, that is, the
laser’s frequency is not exactly an integer multiple of the free
spectral range but close enough to build up a standing wave,
then the phase difference between the two beams will not be
exactly 180°, and they will not completely cancel each other - N
out. (Their intensities will still be about the sameSome / Incident Field
light gets reflected off the cavity, and its phase tells you
which side of resonance your laser is on. Figure 4 shows a { )—
plot of the intensity and phase of the reflection coefficient Re(E}
around resonance. N\ Y

We will find it useful to look at the properties &f(w) in , ~ —
the complex plane(See Fig. 5. It is not too hard to show
(see Appendix Athat the value of always lies on a circle
in the complex plane, centered on the real axis, witbeing
the parameter that determines where on this circleill be.
|F(w)|? gives the intensity of the reflected beam, and it is
given by the fam”iar Airy func_tionF Is Symme-tric around ijg. 5. The reflection coefficient in the complex plane. As the laser fre-
resonanc,e’ but its phase is different depending qnywheth Illf]ency(or equivalently, the cavity IenglrincrpeaseZF(w) traces out a
the laser's f,requency is above or below the Ca_V'ty S reso'circle(counterclockwis)e Most of the timeF is near the real axis at the left
nance. Asw increasesf advances counterclockwise around edge of the circle. Only near resonance does the imaginary pbetome
the circle. For the symmetric, lossless cavity we are considappreciable. Exactly on resonanéeis zero.

frequency (free spectral ranges)

Im{E}

Reflected Field
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B. Measuring the phase of the reflected beam appropriate frequency. In the Pound-Drever—Hall setup,

. where we have a carrier and two sidebands, the total re-
To tell whether the laser’s frequency is above or below theoted beam is

cavity resonance, we need to measure the phase of the re- ) )

flected beam. We do not, as of this writing, know how to  Ee=Eo[F(@)Jo(B8)€"“'+F(w+Q)J (B)e! (@Mt

build electronics that can directly measure the electric field (-t

(and hence the phas®f a light wave, but the Pound-— —Flo=0)Ji(Be I

Drever—Hall methodand fm spectroscopyrovides us with What we really want is the power in the reflected beam,

a way of indirectly measuring the phase. since that is what we measure with the photodetector. This is
Our conceptual model suggests that if we dither the frejust Pref:|Eref|21 or after some algebra

qguency of the laser, that will give us enough information to ) ) ’
tell which side of resonance we are on. A more quantitative  Prer= PclF(@)|*+ P<{|[F(0+Q)[*+|F(0—Q)|%}

way of thinking about this frequency dither is this: Modulat- BB *

ing the laser’s frequencfor phase will generate sidebands T2VPP{REF(0)F* (0 +Q)

with a definite phase relationship to the incident and reflected —F*(w)F(o—Q)]cosQt+Im[F(w)F*(w+Q)
beams. These sidebands will not be at the same frequency as . .

the incident and reflected beams, but a definite phase relation —F (0)F(0—Q)]sinQt}+(2Q terms. (3.3

will be there nonetheless. If we interfere these sidebands we have added three waves of different frequencies, the
with the reflgcted beam, the sum will display a beat pattern a¢arrier, atw, and the upper and lower sidebandseat (.

the modulation frequency, and we can measure the phase ¢he result is a wave with a nominal frequencyagfbut with

this beat pattern. The phase of this beat pattern will tell us,,, envelope displaying a beat pattern with two frequencies.
the phase of the reflected beam. The sidebands effectively Sghe () terms arise from the interference between the carrier
a phase standard with which we can measure the phase of thgq the sidebands, and th€ 2erms come from the side-

reflected beam. bands interfering with each oth#t.
We are interested in the two terms that are oscillating at
C. Modulating the beam: Sidebands the modulation frequenc{) because they sample the phase

. ) . of the reflected carrier. There are two terms in this expres-

| talked about varying the frequency of this beam in thesjon: a sine term and a cosine term. Usually, only one of
qualitative model, but in practice it is easier to modulate thehem will be important. The other will vanish. Which one
phase. The results are essentially the same, but the math thafnishes and which one survives depends on the modulation
describes phase modulation is simpler than the math for frefrequency. In the next section we will show that at low
quency modulation. Phase modulation is also easy to implenodulation frequencie&low enough for the internal field of
ment with a Pockels cell, as shown in Fig. 3. After the beamhe cavity to have time to respond, dR<<Aw,/F),
has passed through the Pockels cell, its electric field has itls(w)F*(w-l-Q)—F*(w)F(w—Q) is purely real, and only

phase modulated and becomes the cosine term survives. At high(Q> A v,/ F) near reso-

Eine=Ege(“tTAsine, nance it is purely imaginary, and only the sine term is im-
. . . . portant.
We can expand this expression, l-JSII’lg Bessel functioR’, to In either case(high or low ) we will measure
Einc=[Jo(B) +2iJ1(B)sinQt]e' F(o)F*(0+Q)—F*(w)F(w—Q) and determine the laser
. : . frequency from that.
—Ef[Jo(B)e + 3y (B)E T V-, (B)el 0] e
(3.2

I have written it in this form to show that there are actually E. Measuring the error signal

three different beams incident on the cavity: a carrier, with ) ) )
(angulaj frequencyw, and two sidebands with frequencies We measure the reflected power given in B43) with a
w=+ . Here,Q is the phase modulation frequency aads  high-frequency photodetector, as shown in Fig. 3. The output
known as the modulation depth. By=|E,|? is the total of this photodetector includes all terms in E§.3), but we

power in the incident beam, then the power in the carrier i&r€ only interested in the siiif) or cos()t) part, which we

5 mixer forms the product of its inputs, and that the product of
P.=J5(B)Po, two sine waves is
and the power in each first-order sideband is sin(Qt)sin(Q't)=3cog (21— Q" )t]—cog (Q+Q")t]}.
Ps=J%(B)Po. If we feed the modulation signaat () into one input of

the mixer and some other signailt ()") into the other input,
the output will contain signals at both the su{ ') and
difference (1— Q') frequencies. I}’ is equal to(2, as is

When the modulation depth is smat£1), almost all of
the power is in the carrier and the first-order sidebands,

Pet+2Ps~Py. the case for the part of the signal we are interested in, then
the cof(Q1—Q')t] term will be a dc signal, which we can
D. Reflection of a modulated beam: The error signal isolate with a low-pass filter, as shown in Fig. 3.

To calculate the reflected beam'’s field when there are se Wg‘ztiﬁézawgwitm'x a sine and a cosine signal, rather than
eral incident beams, we can treat each beam independently ' 9

and multiply each one by the reflection coefficient at the  sin(Qt)cogQ’'t)=3{si(Q— Q' )t]—si(Q+Q')t]}.
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In this case, if0=Q" our dc signal vanishes! If we wantto F(w)F*(w+Q)—F*(0)F(w—Q)
measure the error signal when the modulation frequency is 5
low we must match the phases of the two signals going into_,, Re( F( d., ] _dIF|

. - LI A : ~ ) F*(w) Q= Q,
the mixer. Turning a sine into a cosine is a simple matter of dw ®
Isnr:irf?gru(%;]%;:yonnp;aass:r?cl)f\}\’,r:lviwcggv_vz,can do with a phas%vhicg g purely real. Of thé) terms, only the cosine term in

In practice, you need a phase shifter even when the moduE—q‘ 33 SUNVIVES.

lation frequency is high. There are almost always unequa) 'f W€ approximate P.Ps~Pof/2, the reflected power
delays in the two signal paths that need to be compensatdfPM Ed. (3.3 becomes
for to produce two pure sine terms at the inputs of the mixer. d|F|?
The output of the mixer when the phases of its two inputs are P =(constant termst P q QO B cosQt
not matched can produce some odd-looking error signals @
(see Bjorklund), and when setting up a Pound—Drever—Hall +(2Q terms,
lock you usually scan the laser frequency and empirically,
adjust the phase in one signal path until you get an errof”
signal that looks like Fig. 7. mo

agreement with our expectation from the conceptual
del.

The mixer will filter out everything but the term that var-
ies as co$lt. (We may have to adjust the phase of the signal
before we feed it into the mixgrThe Pound—Drever—Hall
error signal is then

d|F|?
dw

o _ Figure 6 shows a plot of this error signal.
Let's see how the quantitative model compares with our

conceptual model, where we slowly dithered the laser fre- )
quency and looked at the reflected power. For our phasB- Fast modulation near resonance: PoundDrever—

V. UNDERSTANDING THE QUANTITATIVE

MODEL ,

d|F
e=Py Q/B%Z\/PCPS%Q.

A. Slow modulation: Quantifying the conceptual model

modulated beam, the instantaneous frequency is Hall in practice
d _ When the carrier is near resonance and the modulation
o(t)= g (wt+BsinQt) = w+0 S cosOt. frequency is high enough that the sidebands are not, we can
assume that the sidebands are totally refleckdy=(})
The reflected power is jusP,e=Po|F(w)|?, and we ~_1. Then the expression
might expect it to vary over time as
gnt exp y ) F(0)F* (0+Q)—F* (0)F(w—Q)~—i2 Im{F (o)},
P
P 0+ QB cosQ) ~P o ) + ——= QB cost _ o o _ “.D
do is purely imaginary. In this regime, the cosine term in Eq.
d|F|2 (3.3 is negligible, and our error signal becomes
~Pref( @)+ Po=g = Q1 cosQt. e=—2PoPs IM{F(0)F* (0+ Q) — F* (w)F(0—Q)}.

In the conceptual model, we dithered the frequency of thérigure 7 shows a plot of this error signal.
laser adiabatically, slowly enough that the standing wave in- Near resonance the reflected power essentially vanishes,
side the cavity was always in equilibrium with the incident since|F(w)|?~0. We do want to retain terms to first order in
beam. We can express this in the quantitative model by mak-(w), however, to approximate the error signal,

ing Q) very small. In this regime the expression
g very g P Prof~2P.— 4P P.IMm{F(w)}sinQt+ (20 terms.

a
0.2 & {L

<
= f\:o.9 0.9 1.05 1.1
& 0.9 0.998 1.002 1.004
wy

~0. -0.5

-0[4

-1.0
N frequency (free spectral ranges)

frequency (free spectral ranges)
Fig. 7. The Pound—Drever—Hall error signal2\P.Ps vs w/A v, when
Fig. 6. The Pound—Drever—Hall error signal2\P.Ps vs w/A v, when the modulation frequency is high. Here, the modulation frequency is about
the modulation frequency is low. The modulation frequency is about half a20 linewidths: roughly 4% of a free spectral range, with a cavity finesse of
linewidth: about 10° of a free spectral range, with a cavity finesse of 500. 500.
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Im{E} m{E}

Re{E}
Re{E}

Y

) ) Fig. 9. The sum of the two sidebands shown in Fig. 8. This is the actual
Fig. 8. Sidebands ab+ (. electric field produced when the two sidebands interfere with each other.
Note that the intensity oscillates a€2

Since we are near resonance we can write L _
We can represent the electric fields of each beam by time-

2N+ varying vectors in a complex plane that rotates along with
Avig Avgg' the carrier at frequencyw. We can choose this “moving

. . . - reference frame” such that the incident carrier’s electric field
whereN is an integer andio IS the deV|at|o_n of Fhe laser component always lies along the real axis. The part of the
frequency from resonance. It is useful at this point to make., rier that gets reflected from the Fabry—Perot cavity is also
the approximation that the cavity has a high finesse represented by a vector in this plane, as shown in Fig. 5, and

%W/(l—rz). The reflection coefficient is then near resonance it is given by
F%;E' Ecarrier”‘\”\/P—cWav'

where 6v= A,/ F is the cavity's linewidth. The error sig-  The sidebands have different frequencies than the carrier,
nal is then proportional tadw, and this approximation is so they are represented by vectors that spin around in this
good as long asw<< v, reference frame. The uppew () sideband has a higher
4 Sw frt_aqugncy than the parrier, S0 its vector rotates countgrclock—
e~—— VPP S wise in the plane with angular frequenfly The lower side-

That the error signal is linear near resonance allows us to
use the standard tools of control theory to suppress frequency
noise. We will use this linear behavior later on to examine
some fundamental noise limits. It will be useful for us to
write the error signal in terms of the regular frequerfcy
= w/2, instead ofw, and define the proportionality constant
betweene and 6f,

e=D of,
where the proportionality constant, |

8PP,
T

Im{E}

Re{E}

4.2 |

is called the frequency discriminant.

C. A conceptual model good for high modulation
frequency

When the modulation frequency was low, we could pic- Fig. 10. Sidebands and the reflected carrier near resonance. The actual re-
: : S flected beam is the coherent sum of these two fields. The small reflected
tu.r?] t?le reﬂ%Ctled. pow;:‘r f|1n tlhe tlmi dﬁ.mﬁ‘m agdlcc.)mp?‘re Igarrier introduces an asymmetry in the intensity over {sriod, which
with the modulation of the laser. At high modulation fre- produces a component that varie€atThis () component is the beat signal

ql.«'enCieS, we can _Sti” conceptualize the technique, but Wgetween the carrier and the sidebands, and its sign tells you whether you are
will have to be a bit more subtle. above resonance or below it.
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band has a lower frequency and rotates clockwise-&t sensitive to each of these because we are locking on reso-
(See Fig. 8. The sum of the two sidebands, when they arenance, where the reflected carrier vanishes. This causes all of
both completely reflected off the cavity, is a single vectorthese first-order terms to vanish in a Taylor expansion of the
that oscillates up and down along the imaginary ag&ee error signal about resonand@\ good treatment of optically

Fig. 9) This field is given by[see Eq(3.2)] related noise sources in a gravitational-wave detector can be
. . found in Ref. 23.
Exidenands™ —12/Pssin€t. The system is first-order sensitive to fluctuations in the

The total field reflected off the cavity is the vector sum of sideband power at the modulation frequerizyMost noise
the reflected carrier and the two sidebar(@e Fig. 10.We  sources fall off as frequency increases, so we can usually
measure the intensity of this field with the photodetector, andeduce them as much as we want by going to a high enough

that is just the magnitudésquared of the total field, modulation frequency. There is one noise source, however,
B 2 that does not trail off at high frequencies, and that is the shot
Prer= |Ecarriert Esidebandk noise in the reflected sidebands. Shot noise has a flat spec-
Sw \2 Sw trum, and for high enough modulation frequencies it is the
~ PC(— +2Ps— 4P Py ——sinQt dominant noise source.
TV TV
—2Pscos A0t. B. Shot noise limited resolution

The cross term proportional to silt represents the beat-  Any noise in the error signal itself is indistinguishable
ing of the sidebands with the reflected carrier, and its sigrirom noise in the laser’s frequency. There is a fundamental
tells you which side of resonance you are on. TRet@rm is  |imit to how quiet the error signal can be, due to the quantum
the result of the two sidebands beating together. nature of light?*

Now we are in a position to understand why the error On resonance, the reflected carrier will vanish, and only
signal is not limited by the bandwidth of the cavity. When- the sidebands will reflect off the cavity and fall on the pho-
ever there is a phase mismatch between the promptly reodetector. These sidebands will produce a signal that oscil-
flected field and the leakage field, we get an error signal. Folates at harmonics of the modulation frequency. Calculating
very fast changes in the frequency of the incidéand the shot noise in such a cyclostationary signal is fairly
promptly reflectefibeam, the leakage beam acts as a stableubtle? but for our purposes we may estimate it by replac-
reference, averaging both the frequency and the phase of theg this cyclostationary signal with an averaged, dc signal.
laser over the storage time of the cavityf the promptly  The average power falling on the photodiode is approxi-
reflected beantwhich provides an effectively instantaneous mately P,.=2Ps. The shot noise in this signal has a flat
measure of the incident bearthiccups,” i.e., jumps away spectrum with spectral density of
from this average, the error signal will immediately register
this jump, and the feedback loop can compensate for it. We S - /2 hc op
are effectively locking the laser to a time average of itself e T( s)-
over the storage time of the cavity. . . .

Dividing the error signal spectrum Hy gives us the appar-

V. NOISE AND FUNDAMENTAL LIMITS: HOW ent frequency noise,

WELL CAN YOU DO? hc? 1

A. Noise in various parameters 8 FL\ PC'

| have only talked about laser frequency so far, but it is a Since you can’t resolve the frequency any better than this,
straightforward exercise to extend this analysis in terms ofjou can’t get it any more stable than this by using feedback
both frequency and cavity length. A little algebra shows thato control the laser. Note that the shot noise limit does not
the laser frequency and the cavity length are on equal footexplicitly depend on the power in the sidebands, as you
ings near resonance. For high modulation frequencies, might expect. It only depends on the power in the caffer.

SLF(5F 6L _ It's worth putting in some numbers to get a feel for these

e=—8\P.P, _{_4_ _] limits. For this example we will use a cavity that is 20 cm

A f L long and has a finesse of4Gand a laser that operates at 500

where 5L is the deviation of the cavity length from reso- MW with a wavelength of 1064 nm. If the cavity had no
nance, analogous f. All along | have been talking about length noise and we locked the laser to it, the best frequency

measuring the frequency noise of the laser and locking it to &@Pility we could get would be

quiet cavity, but we could have just as easily measured the Hz | 10° 20 cm /1064 nmB500 mwW
length noise in the cavityprovided the laser was relatively S;=| 1.2x10°° — \/ .
quied and locked the cavity to the laser. JHz] F L A Pc

Note that it is not possible to distinguish laser frequency 1o same shot noise would limit your sensitivity to cavity
noise from cavity noise just by looking at the error Signa"length if you were locking the cavity to the laser. In this
One naturally wonders what other noise sources contribute to,co the apparent length noise would be
the error signal. It is a straightforward exercise to show that '
none of the following contribute to the error signal to first L \/h—c \/f
order: variation in the laser power, response of the photodi- SL:?Sf:T ﬁ
ode used to measure the reflected signal, the modulation ¢
depth g, the relative phase of the two signals going into theFor the example cavity and laser we used above, this would
mixer, and the modulation frequendy. The system is in- be

(5.0
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m \ 10 ~__ 500 mW If this circle intersects the origifi.e., the reflected intensity
S =(8.1x10 22— |— ) vanishes on resonancien the cavity is said to beritically
JHz) 7 V1064 nm P, coupled The requirement for critical coupling is tha
=|Z,l, or
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APPENDIX A: A PROOF OF THE CIRCLE Ogher cases, known as l'J.ndercoupI'ing _and. overcoupling,
are illustrated along with critical coupling in Fig. 11. Over-

THEOREM coupling plays a central role in interferometric gravitational-
For the general case of a Fabry—Perot cavity with lossyvave detectors and can be achieved by making the end mir-

Our lossless, symmetric cavity hagd=r,=r, t;=t,=t,
+t2=1, and satisfied the conditions for critical coupling.
lossy, asymmetric cavity can also be critically coupled,

mirrors, the reflection coefficient is ror much more reflective than the near mirros<€t;).
—r1+r2(ri+t§)ex%i A(: ) APPENDIX B: OPTIMUM MODULATION DEPTH
fsr
F= w : It is sometimes useful to maximize the slope of the error
1—r1r2ex;(i ) signal D [recall Eq.(4.2)]. This slope is a measure of the
Avgg sensitivity of the error signal to fluctuations in the laser fre-

Here,r, andt, are the amplitude reflection and transmissionduency(or cavity length. One example of when you might
coefficients of the input mirror, and, is the amplitude re- need a high sensitivity in this discriminant is if you need a

flection coefficient of the end mirro(Note that the reflection large ga'in if‘ the feedback loop. N
coefficient does not depend on the transmission of the end '€ discriminanD depends on the cavity finesse, the laser

mirror!) It is straightforward algebra to show thatsatisfies ~ Wavelength, and the power in the sidebands and the carrier.
the equation of a circle: Experimental details usually restrict your finesse and wave-

length choices, but you often have quite a bit of freedom in

|F(w)=Zo|*=R? adjusting the sideband power. The question | want to address
for all w. Z, andR are both real and are given by gwo\tlc;?sectmn is this: How doeb depend on the sideband
rq D is proportional to the square root of the product of the
_ 2,.2 2 . . .
Zo=— —1_r2r2[1_r2(r1+t1)] sideband and carrier powdSee Eq(4.2).] This has a very
re simple form whenP.+2P,~P,, i.e., when negligible
and power goes into the higher order sidebands,

tirs P P.| P
R=—12 . Y L P it
1-rir; DervPePs= N 5 (1 PO) Py’

A plot of D in this approximation againg®./P, traces out
the top half of a circle, with a maximum &./P,=1/2.(See

Im{F ) . . .
miF) Fig. 12) It is useful to express the power in the sidebands
Overcoupled A
/\ﬁ |
U Re{F}
v >
>
“ 0 0.5 1.0
' Critically Coupled
Undercoupled P, /P,

1
Fig. 12. An approximate plot oD, the slope of the error signal near reso-
Fig. 11. Plots ofF in the complex plane for various couplings. Only for the nance, v&P4/P.. The optimum value is &/P.=1/2, and the maximum
impedance matched case does the reflected intensity vanish on resonances. very broad.
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GRAND CANYON BOATWOMAN

Lorna[Corson rows gracefully and likes being in control. Her least-favorite rapid is unpre-
dictable Granite. “It's sloppy, there’s no finesse.” Lorna’s favorite rapid is Deubendorff at |ow
water, when you have to make an exact entry or risk smashing into black fang rocks disguised as
foam at the bottom. “I love reading the water, estimating what you think it will do, getting your
angles right, and finding out how close your calculations were—just the physics of water.”

Louise Teal Breaking into the Current: Boatwoman of the Grand Canydniversity of Arizona Press, Tucson, 1994.
130.
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