
Improving ADC Resolution By Oversampling and
Averaging

CYGNALApplicationNote
Introduction
Many applications require measurements
using an analog-to-digital converter (ADC).
Such applications will have resolution require-
ments based in the signal’s dynamic range, the
smallest change in a parameter that must be
measured, and the signal-to-noise ratio (SNR).
For this reason, many systems employ a higher
resolution off-chip ADC. However, there are
techniques that can be used to achieve higher
resolution measurements and SNR. This appli-
cation note describes utilizing oversampling
and averaging to increase the resolution and
SNR of analog-to-digital conversions. Over-
sampling and averaging can increase the reso-
lution of a measurement without resorting to

the cost and complexity of using expensive
off-chip ADC’s.

This application note discusses how to
increase the resolution of analog-to-digital
(ADC) measurements by oversampling and
averaging. Additionally, more in-depth analy-
sis of ADC noise, types of ADC noise optimal
for oversampling techniques, and example
code utilizing oversampling and averaging is
provided in appendices A, B, and C respec-
tively at the end of this document.

Key Points
• Oversampling and averaging can be used

to increase measurement resolution, elimi-

Relevant Devices
This application note applies to the following devices:
C8051F000, C8051F001, C8051F002, C8051F005, C8051F006, C8051F010, C8051F011, C8051F012,
C8051F012, C8051F015, C8051F016, and C8051F017.

n-bit
ADC

x(t)

Input Signal

Sample
Frequency (fs)

e[n] (Noise)

x[n] x[n]+e[n]
OSR

Low-Pass
Filter

Downsample

Oversample and Average

(Software Accumulate and Dump)

(n+w) bit
Output Data

Figure 1. Oversampling and Averaging to Increase Measurement Resolution By
“w” Bits
CYGNAL Integrated Products, Inc. AN018 - 1.1 MAY01
4301 Westbank Drive Copyright © 2001 Cygnal Integrated Products, Inc.

Suite B-100 (All rights reserved)

Austin, TX 78746
www.cygnal.com

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
nating the need to resort to expensive, off-
chip ADC’s.

• Oversampling and averaging will improve
the SNR and measurement resolution at the
cost of increased CPU utilization and
reduced throughput.

• Oversampling and averaging will improve
signal-to-noise ratio for “white” noise.

Sources of Data Converter
Noise
Noise in ADC conversions can be introduced
from many sources. Examples include: ther-
mal noise, shot noise, variations in voltage
supply, variation in the reference voltage,
phase noise due to sampling clock jitter, and
noise due to quantization error. The noise
caused by quantization error is commonly
referred to as quantization noise. Noise power
from these sources can vary. Many techniques
that may be utilized to reduce noise, such as
thoughtful board layout and bypass capaci-
tance on the reference voltage signal trace.
However, ADC’s will always have quantiza-
tion noise, thus the best SNR of a data con-
verter of a given number of bits is defined by
the quantization noise with no oversampling.
Under the correct conditions, oversampling
and averaging will reduce noise and improve
the SNR. This will effectively increase the
number of bits of a measurement’s resolution.
Such a system is shown in Figure 1 on page 1,
and can be implemented with Cygnal’s on-chip
ADC and a software routine that takes a set of
samples and averages (filters) them for the
result.

Increasing the Resolution
of an ADC Measurement
Many applications measure a large dynamic
range of values, yet require fine resolution to
measure small changes in a parameter. For

example, an ADC may measure a large tem-
perature range, yet still require the system to
respond to changes of less than one degree.
Such a system could require a measurement
resolution of 16 bits. Rather than resorting to
an expensive, off-chip 16-bit ADC, oversam-
pling and averaging using Cygnal’s on-chip,
12-bit ADC can measure a parameter with 16
bits of resolution.

Some applications will use an ADC to analyze
a signal with higher frequency components.
Such a system will also benefit from oversam-
pling and averaging. The required sampling
frequency in accordance with the Nyquist The-
orem is the Nyquist Frequency:

Sampling frequencies (fs) above fn is oversam-
pling, and will increase the resolution of a
measurement. Please see Appendix A for a
discussion of how this works.

Calculating theOversampling
Requirements To Increase
Resolution
To increase the effective number of bits
(ENOB), the signal is oversampled, or sam-
pled by the ADC at a rate that is higher than
the system’s required sampling rate, fs. The
required sampling rate may be determined by
how often a system requires a parameter be
measured (output word rate), or it may be the
Nyquist frequency, fn.

fn 2 fm⋅=

where fm is the highest frequency compo-
nent of interest in the input signal

Equation 1. Nyquist Frequency
2 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
For each additional bit of resolution, the signal
must be oversampled by a factor of four:

A derivation of Equation 2 is presented in
Appendix A.

Assume a system is using a 12-bit ADC to out-
put a temperature value once every second
(1 Hz). To increase the resolution of the mea-
surement to 16-bits, we calculate the oversam-
pling frequency as follows:

Thus, if we oversample the temperature sensor
at fs=256 Hz, we will collect enough samples
within the required sampling period to average
them and can now use 16-bits of the output
data for a 16-bit measurement. To do so, we
accumulate (add 256 consecutive samples
together), then divide the total by 256 (or right
shift the total by 4-bits). Such a process is
commonly referred to as decimation. This
results in 16-bits of useful data. Such an opera-
tion is referred to as accumulate and dump.
Once we calculate the result of 256 samples (in
this example), we store or process the data and
begin collecting data for the next output word.

Note: The memory location used to accumu-
late the oversampled data and perform the
divide must have enough bytes to prevent
overflow and truncation error.

An example of such oversampling and averag-
ing is provided in Appendix C. In this exam-
ple, Cygnal’s on-chip temperature sensor is
sampled using the on-chip 12-bit ADC to
make a 16-bit measurement. For a more formal
discussion of how oversampling affects noise
and increases resolution, please see
Appendix A.

Calculating theOversampling
Requirements To Increase
SNR
The theoretical limit of the SNR of an ADC
measurement is based on the quantization
noise due to the quantization error inherent in
the analog-to-digital conversion process when
there is no oversampling and averaging.
Because quantization error depends on the
number of bits of resolution of the ADC (see
Equation 5), the best case SNR is calculated as
a function of the Effective Number of Bits of a
data conversion as follows:

Note Equation 3 is valid for a full-scale input.
That is, the dynamic range of the input signal
must match the reference voltage of the ADC.
If not, the SNR will be lower than that calcu-
lated using Equation 3.

If the ADC used to measure a parameter is 12-
bits and not oversampled, then the best SNR
(calculated using Equation 3) is 74 dB. If we
desire a better SNR, then we could calculate
the ENOB needed using Equation 3 for a spec-
ified SNR. Once we know the required ENOB,

fos 4w
fs⋅=

where w is the number of additional bits of
resolution desired, fs is the original sam-
pling frequency requirement, and fos is the
oversampling frequency

Equation 2. Oversampling Frequency To
Add Measurement Resolution

fos 4
4

1 Hz()⋅ 256Hz= =

SNR dB() 6.02 ENOB⋅() 1.76+=

where ENOB is the effective number of bits
of the measurement

Equation 3. SNR Calculation as a
Function of ENOB
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 3

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
we can then use Equation 2 to calculate the
oversampling requirements.

For example, if the required SNR for an appli-
cation is 90 dB, then we will need at least 16-
bits of resolution. Using and 12-bit ADC and
Equation 2, we know we must oversample by a
factor of 256.

When Oversampling and
Averaging Will Work
The effectiveness of oversampling and averag-
ing depends on the characteristics of the domi-
nant noise sources. The key requirement is that
the noise can be modeled as white noise.
Please see Appendix B for a discussion on the
characteristics of noise that will benefit from
oversampling techniques. Key points to con-
sider are [2] [3]:

• The noise must approximate white noise
with uniform power spectral density over
the frequency band of interest.

• The noise amplitude must be sufficient to
cause the input signal to change randomly
from sample to sample by amounts compa-
rable to at least the distance between two
adjacent codes (i.e., 1 LSB - please see
Equation 5 in Appendix A).

• The input signal can be represented as a
random variable that has equal probability
of existing at any value between two adja-
cent ADC codes.

Note: Oversampling and averaging techniques
will not compensate for ADC integral non-lin-
earity (INL).

Noise that is correlated or cannot be modeled
as white noise (such as noise in systems with
feedback) will not benefit from oversampling
techniques. Additionally, if the quantization
noise power is greater than that of natural
white noise (e.g., thermal noise), then over-

sampling and averaging will not be effective.
This is often the case in lower resolution
ADC’s. The majority of applications using 12-
bit ADC’s can benefit from oversampling and
averaging.

Please see Appendix B for a further discussion
on this topic.

Example
An example that utilizes oversampling and
averaging is provided in this application note
in Appendix C. This code uses Cygnal’s on-
chip, 100 ksps, 12-bit ADC to perform a 16-bit
measurement of the on-chip temperature sen-
sor, then outputs this data via the hardware
UART.

Using Equation 2, the oversampling ratio is
256. The provided code (in “AN018_SW.c”)
adds 256 consecutive ADC samples to the
variable accumulator. After 256 samples have
been added, it shifts accumulator left 4 bits
and places the result in the variable result. This
gives 16-bits of useful data. After the result is
calculated, accumulate is then “dumped”
(cleared) for the next calculation. The accumu-
lation of the ADC samples are performed in an
ADC end-of-conversion interrupt service rou-
tine (ADC_isr).

For more information concerning configuring
and using the on-chip temperature sensor,
please see application note “AN003 - Using
the On-Chip Temperature Sensor.”

Resolution Improvement
We oversample and average the temperature
sensor to increase the measurement resolution
from 12-bits to 16-bits. Let’s compare the
improvement in the temperature measurement.
4 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
The full-scale output of the on-chip tempera-
ture sensor is slightly less than 1 volt. Assum-
ing a reference voltage (Vref) of 2.4 volts, we
can calculate the code width and temperature
resolution (smallest measurable change in tem-
perature) for both 12-bit and 16-bit measure-
ments.

12-bit Temperature Resolution

Without oversampling, we will get a 12-bit
result from the temperature measurement. The
on-chip temperature sensor voltage will
change 2.8 mV for each change in degrees Cel-
sius. The voltage resolution for a 2.4 volt Vref
and a PGA gain of 2 is (using Equation 5 in
Appendix A):

Thus, the temperature resolution in a 12-bit
measurement (the number a degrees C per
ADC code) is:

So for each ADC code, the minimum tempera-
ture change we may measure is 0.104 degrees
C or above one-tenth of a degree. Perhaps we
need better temperature resolution that will
allow us to display closer to one-hundredth of
a degree. We can achieve this resolution by
using the same 12-bit ADC with oversampling
and averaging.

16-Bit Temperature Resolution

Increasing the effective number of bits
(ENOB) to 16-bits through oversampling and
averaging, a new resolution is calculated as
follows:

Thus, the smallest temperature change we can
measure is:

We can now measure a 0.007 degree C change
in temperature using the same, on-chip, 12-bit
ADC with oversampling and averaging. This
now allows us to measure temperature to an
accuracy of better than one-hundredth of a
degree.

Reduced Throughput

Throughput refers to the number of output data
words we obtain per unit time. If an ADC has a
maximum sample rate of 100 ksps, we would
obtain a 100 ksps output word rate without
oversampling and averaging. However, if we
oversample and average (decimate) to achieve
higher resolution, throughput will be reduced
by a factor of the oversampling ratio, OSR (see
Equation 7). Oversampling by a factor of 256
as we do in the provided example, our output
word rate will be 100 ksps/256 = 390 samples
per second (390 Hz). Thus, there is a trade-off
between resolution and throughput for a given
sampling rate. Another trade-off is the reduced
CPU bandwidth during each sampling period
(1/fs) due to the additional sampling and com-

∆ 2.4

2
12

2⋅
--------------- 293µV/°C= =

∆ is the code width as defined in
Equation 5 on page 8. The factor of 2 in the
denominator is to account for a PGA gain
of 2.

Tres12
293µV
code

----------------=
°C

2.8mV
----------------⋅ 0.1046 °C code⁄=

Tres12 is the temperature resolution for a 12-
bit measurement.

∆ 1.2

216
------- 18.3µV/°C= =

Tres16
18.3µV
code

------------------=
°C

2.8mV
----------------⋅ 0.0065 °C code⁄=

Tres16 is the temperature resolution for a 16-
bit measurement.
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 5

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
putations required to achieve the additional
resolution.

Summary
If ADC noise can be approximated as white
noise, oversampling and averaging can be used
to improve the SNR and effective resolution of
the measurement. This can be done for static
dc measurements and for input signals with
higher frequency components. Equation 2
shows that each additional required bit of reso-
lution can be achieved via oversampling by a
factor of four, and each additional bit will add
approximately 6 db of SNR (Equation 3) at the
cost of reduced throughput and increased CPU
bandwidth.
6 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
Appendix A - Theory of
Noise and Oversampling
This section discusses how oversampling and
averaging affects in-band noise, and how to
calculate the oversampling requirements to
obtain a desired SNR or measurement resolu-
tion.

How Oversampling and Aver-
aging Improves Performance
Oversampling and averaging is done to accom-
plish two things: improve SNR and increase
the effective resolution (i.e., increase the effec-
tive number of bits of the ADC measurement).
Both of these are really the same entities. For
example, if we have a 12-bit ADC and want to
generate codes with 16-bits of resolution, then
we can use oversampling and averaging to get
the same SNR of a 16-bit ADC. This will
increase the effective number of bits (ENOB)
of the measured data, which is another mea-
sure of SNR. Producing a lower noise floor in
the signal band, the oversampling and averag-
ing filter allows us to realize 16-bit output
words.

How Oversampling Affects In-
Band Noise

A sampling frequency fs will allow signals of
interest to be reconstructed at one-half of the
sampling frequency (Nyquist Theorem). Thus,
if the sampling rate is 100 kHz, then signals
below 50 kHz can be reconstructed and ana-
lyzed reliably. Along with the input signal,
there will be a noise signal (present in all fre-
quencies as white noise) that will fold or alias

into the measured frequency band of interest
(frequencies less than one-half of fs)

Equation 4 shows that the Energy Spectral
Density (ESD), or noise floor of the sampled
noise will decrease in the signal band as the
sampling frequency is increased.[3]

The Relationship Between Over-
sampling and Increased Resolu-
tion

Given the fixed noise power due to quantiza-
tion noise, we may calculate the amount of
oversampling required to increase the effective
resolution. For example, if we want to increase
the effective number of bits of a parameter
measured with a 12-bit ADC to a 16-bit mea-
surement, then we will want to establish a rela-
tionship that allows us to calculate the
oversampling requirement. To do so, we first
define the characteristics of the noise.

Noise Analysis

To understand the effects of oversampling and
averaging on noise, we must first define what
the quantization noise will be.

The distance between adjacent ADC codes
determines the quantization error. Because the

E f() erms
2
fs
---- 
  1 2/

⋅=

Equation 4. Energy Spectral Density of
In-Band Noise

where erms is the average noise power, fs
is the sampling frequency, and E(f) is the
in-band ESD.
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 7

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
ADC will round to the nearest quantization
level, or ADC code:

The quantization error (eq) is:

Assuming the noise approximates white noise,
the random variable representing the noise is
equally distributed with zero mean between
ADC codes. Thus, the variance is the average
noise power calculated [3] :

A measure of the sampling frequency com-
pared to the Nyquist frequency (see
Equation 1) is the oversampling ratio (OSR).
This is defined as follows:

If the noise is white, then the in-band noise
power at the output of the low-pass filter is
(see Figure 1 on page 1):

Equation 8 shows we can lower the in-band
noise power by increasing the OSR. Oversam-
pling and averaging does not affect the signal
power [1]. Thus, we increase the SNR because
oversampling lowers noise power and does not
affect signal power.

From Equations 5, 6, and 8, we can derive the
following expression relating the noise power
to the oversampling ratio and resolution:

Conversely, given a fixed noise power, we can
calculate the required number of bits. Solving
Equation 9 for N, we obtain Equation 10 that
shows how to calculate the number of effective

∆ Vref
2N

-----------=

where N is the number of bits in the ADC
code and Vref is the reference voltage.

Equation 5. Distance Between ADC
codes, or the LSB

eq
∆
2
---≤

erms
2 eq

2

∆----- 
  ed

∆– 2⁄

∆ 2⁄

∫
∆2

12
------= =

Equation 6. Noise Power Due to
Quantization in the ADC

OSR
fs

2 fm⋅-------------=

Equation 7. Oversampling Ratio

where fs is the sampling frequency and fm
is the highest frequency component of the
input signal.

n0
2

erms f()2
fd

0

fm

∫= erms
2 2 fm⋅

fs
------------- 
  erms

2

OSR
-----------= =

Equation 8. In-Band Noise Power as a
Function of the OSR

where n0 is the noise power output from the
filter.

n0
2 1

12 OSR⋅()---------------------------
Vref

2N
----------- 
  2

=

Equation 9. Noise Power As a Function
[1] of OSR and Resolution

where OSR is the oversampling ratio, N
is the number of ADC bits, and Vref is the
reference voltage.
8 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
bits given the reference voltage, in-band noise
power, and oversampling ratio. [1]

From Equation 10, we observe:

Each doubling of the sampling frequency will
lower the in-band noise by 3 dB, and increase
the resolution of the measurement by 1/2 bit.
[3]

In a practical sense, we measure a signal band-
limited to less than 1/2*fs, then oversample
that signal with an oversampling ratio (OSR).
The resulting samples are then averaged (or
decimated) for the resulting output data. For
each additional bit of resolution or 6dB of
noise reduction, we oversample by a factor of
four:

Equation 11 is Equation 2 presented at the
beginning of this application note. If we are
using the 12-bit on-chip ADC and wish to have
the accuracy of a 16-bit ADC, we need an
additional 4 bits of resolution. Four factors of
four (using Equation 11) is 256. Thus, we need
to oversample by a factor of 256 times the
Nyquist rate. If the desired signal is band-lim-
ited to 60 Hz (fm=60 Hz), then we must over-

sample at 120 Hz * 256 = 30.7 kHz. We
improve the effective resolution by improving
the SNR in our frequency band of interest.
Increasing the sampling rate, or OSR, lowers
the noise floor in the signal band of interest (all
frequencies less than 1/2 of fs).

Equation 10. Number of Effective Bits As a Function of Reference Voltage, In-Band Noise
Power, and Oversampling Ratio

N
1
2
--- OSR()2

1
2
--- 12()2log–

1
2
--- n0

2()2 Vref()2log+log–log–=

fos 4w
fs⋅=

where w is the number of additional bits of
resolution desired, fs is the original sam-
pling frequency requirement, and fos is the
oversampling frequency
Equation 11. Oversampling Frequency

To Add Measurement Resolution
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 9

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
The frequency profiles of the quantization
noise and input signal are shown in Figure 2.
Note when oversampling occurs, less of the

noise profile overlaps the input signal profile.
Thus, a low-pass filter may be more selective
without affecting the input signal, and filter

f

Noise Power(σ)

Input Signal
Frequency Profile
When Sampled at

Nyquist Frequency (fn)

fnfn/OSR

fn

fn∗OSR

Input Signal
Frequency Profile
Oversampled (With
Oversampling Ratio

OSR)

-fn/OSR-fn

Figure 2. Frequency Profiles of Input Signals Sampled at Nyquist Frequency,
Oversampled Frequency, and the Quantization Noise Floor

f

Noise Power(σ)

fnfn/OSR

fn∗OSR

Input Signal
Frequency Profile
Oversampled (With
Oversampling Ratio

OSR)

-fn/OSR-fn

Frequency Profile of
an Ideal Low-Pass

Filter

Noise Outside Low-
Pass filter is Removed

From Signal

Figure 3. Frequency Profile Of Oversampled Signal and an Ideal Low-Pass Filter
Removing Noise
10 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
more of the in-band noise. The noise power at
the output of the filter is calculated using
Equation 8. This is the noise level lowered due
to the oversampling and averaging filter. This
is depicted in Figure 3. The noise that is fil-
tered between fm, and fm/OSR. Without over-
sampling, the filter would not have removed
this noise. The output is also downsampled
(decimated) by a factor of the OSR (see
Figure 1) to the original Nyquist frequency, fn.
This will give the input signal its frequency
profile as if sampled at the Nyquist frequency,
and the noise profile a lower value (if filtered)
of erms/OSR (see Figure 4).

Calculating Signal To Noise
Ratio
Signal-to-noise ratio is defined as the ratio of
the rms signal power to the rms noise power in
decibels (dB). No matter how carefully we
work to remove sources of ADC noise, quanti-
zation noise will always be present. Thus, ideal
SNR is calculated based on quantization noise

with no oversampling and averaging.
Equation 5 shows that the higher the resolution
of the ADC, the lower the quantization error
and therefore, the lower the quantization noise.
The more bits in the ADC, the better the SNR
can be. As shown in the previous sections,
oversampling and averaging lowers the in-
band noise, improving the SNR and increasing
the effective number of bits (ENOB). ENOB is
another measure of SNR, and both can be cal-
culated to determine specifications and over-
sampling requirements needed to meet these
specifications.

In order to get the best case SNR, the dynamic
range of the input signal must match the refer-
ence voltage (Vref). If we assume the best case

f

Noise Power Before
Oversample and Filter

(e)

Unaffected Input
Signal Frequency
Profile Of Signal

Downsampled At the
Filter Output

fn

fn

-fn

New Noise Floor After Filter
and Downsample, Reduced
by a factor of 1/OSR (e/OSR)

Figure 4. Oversampled Signal After Filter and Downsampled to the Nyquist
Frequency Showing Lowered Noise Floor
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 11

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
input signal to be a full-scale sine wave, then
it’s rms value as a function of Vref will be:

From the noise power calculation in
Equation 9, we determine the rms noise power
as a function of the number of bits, N (not
oversampled) to be:

The SNR in dB is then calculated as follows:

When oversampling, we may substitute the
effective number of bits (ENOB) for N in
Figure 14. Simplifying Equation 14 and sub-
stituting the term ENOB for N we obtain the
well known result in decibels:

Averaging To Increase the
Effective Resolution of a dc
Measurement
Thus far, we have considered measuring sig-
nals within some frequency band of interest,
fm. However, our goal may be to measure a rel-
atively static dc signal (such as a temperature
or strain gauge output). If we wish to measure
a signal that is relatively static, that is, the
dominant frequency is near dc, we can still
improve the effective resolution by oversam-
pling and averaging [2].

Applications Measuring a Static
Voltage

If a weigh scale must measure a wide range of
weights, yet still be able to discern small
changes in weight, then oversampling and
averaging can increase the effective resolution
of the measurement. As another example, if
the ADC must measure the output of a temper-
ature sensor, the temperature range may be
large, yet the system application may have to
respond to small changes.

Oversampling and Averaging as
an Interpolative Filter

Averaging data from an ADC measurement is
equivalent to a low-pass digital filter with sub-
sequent downsampling (see Figure 1 on
page 1). Digital signal processing that over-
samples and low-pass filters a parameter is
often referred to as interpolation. In this sense,
we use oversampling to interpolate numbers
between the 12-bit ADC codes. The higher the
number of samples averaged, the more selec-
tive the low-pass filter will be, and the better
the interpolation.

Vrms

Vref

2 2
----------=

Equation 12. Input Signal RMS Value as
a Full-Scale Sine Wave

n0

Vref

2
N

12
-----------------=

Equation 13. RMS Noise Power Value

SNR 20
Vrms

n0
----------- 
 log⋅ 20

2N 12

2 2

 
 
 

log⋅= =

Equation 14. SNR as a Function of the
Number of Bits, N

SNR dB() 6.02 ENOB⋅() 1.76+=

where ENOB is the effective number of bits
of the measurement

Equation 15. SNR Calculation as a
Function of ENOB
12 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
Appendix B - When Over-
sampling and Averaging
Will Work
This section discusses guidelines to determine
if oversampling and averaging will be effective
for a given application.

The analog-to-digital data conversion process
introduces noise. Oversampling and averaging
can reduce certain types of noise, thereby
increasing the SNR and effective resolution of
the data conversion. Not all applications will
benefit from oversampling and averaging. To
understand which ADC measurements will
benefit from oversampling, we must under-
stand the type and characteristics of the noise
present in a given system.

Noise Requirements For
Effective Oversampling
Oversampling and averaging can improve the
SNR and increase the effective resolution of
the analog-to-digital data measurement. How-
ever, this will work only if the ADC noise can
be approximated as white noise [2] [3]. If the
input signal changes randomly from sample to
sample, by amounts (amplitude) comparable to
the code size (1 LSB), and the input signal has
equal probability of being anywhere between
two adjacent codes, then the noise can be mod-
eled as approximating white noise. White
noise is characterized as having a uniform
power spectral density over the frequency
band of interest. When the noise can be
approximated as white noise, then oversam-
pling and averaging can improve the SNR and
increase the effective resolution of the data.

If the overall noise is not stationary, (e.g., sys-
tems that have some correlation due to feed-
back), then oversampling and averaging may
not be effective. Additionally, if the quantiza-

tion noise is comparable to sources of white
noise (i.e., thermal and shot noise is small
compared to the quantization noise), then
oversampling and averaging may not be effec-
tive. This situation is typical when using lower
resolution ADC’s (e.g., 8-bit ADC’s). In this
case, the thermal noise does not have sufficient
amplitude to cause the input signal to change
randomly with equal probability between
codes, because the code width ∆ (Equation 5),
is too large. Some applications will inject noise
into the signal or process intentionally to over-
come this effect. This is referred to as dither-
ing.

Histogram Analysis
Most applications that measure a signal using a
12-bit ADC will benefit from oversampling
and averaging techniques. A practical means
of determining if the noise characteristics are
appropriate is to analyze the ADC output data
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 13

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
using a histogram (see Figure 5 below).[2]
This histogram shows how many samples in a
set from an ADC resulted in each ADC code.
If the input signal is a constant dc voltage
value, the histogram will approximate a gauss-
ian probability distribution function (PDF) if
the noise is white, as shown in Figure 5.[2]
Due to the input voltage, the “bin” for code
1024 received the greatest number of samples,
while surrounding codes received some sam-
ples due noise. Because the histogram approxi-
mates a Gaussian PDF (shown as a blue dotted
line in Figure 5), the noise approximates white
noise, and this system can benefit from over-
sampling and averaging techniques.

A system with insufficient noise (besides the
quantization noise) will result in a histogram
with all samples going to only one bin, or
code. Oversampling and averaging may not be
helpful in such a system.

If the noise is correlated or the ADC’s transfer
function is non-linear (e.g., power supply
noise, poor INL, etc.), the histogram may not
approximate a Gaussian PDF, such as the one

N
um

be
r
of
S
am

pl
es

12-bit ADC Codes

"Bin" that has highest
number of samples

and is closest to input
signal

Other "bins" receive
samples due to noise

......

Histogram has a
shape that

approximates a
Gaussian PDF (shown
as dashed line) due to
white noise mixed with
dc input signal voltage

0 4095102410231022102110201019 1025 1026 1027 1028 1029

Figure 5. Histogram of ADC samples: dc Input With White Noise
14 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
in Figure 6). In this case, oversampling and
averaging may not helpful.

In summary, if the combined sources of noise
in the resultant ADC codes approximates
white noise, a histogram of the samples will
approximate a Gaussian PDF, and oversam-
pling and averaging will improve the SNR and
increase the effective number of bits of the sig-
nal measurement.

N
um

be
r
of

S
am

pl
es

12-bit ADC Codes

"Bin" that should
receive the highest
number of samples

and is closest to input
signal

......

Histogram does not
have a shape that
approximates a

Gaussian PDF (shown
as dashed line) due to
possible correlation
and poor INL

0 4095102410231022102110201019 1025 1026 1027 1028 1029

Figure 6. Histogram of ADC Samples Not Optimal For Oversampling and
Averaging Techniques
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 15

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
Appendix C - Example
Code
//---
// AN018_SW.c
//---
// Copyright 2001 Cygnal Integrated Products, Inc.
//
// AUTH: BW
//
// This program prints the C8051Fxxx die temperature out the hardware
// UART at 115.2kbps. Assumes an 18.432MHz crystal is attached between
// XTAL1 and XTAL2.
//
// The ADC is configured to look at the on-chip temp sensor. The sampling
// rate of the ADC is determined by the constant <SAMPLE_RATE>, which is given
// in Hz. The maximum value of <SAMPLE_RATE> is limited to ~86kHz due to
// the choice of 18.432MHz crystal (SAR clock = SYSCLK / 16 = 1.152MHz. One
// conversion takes 16 SAR clocks --> 72kHz sampling rate).
//
// The ADC End of Conversion Interrupt Handler retrieves the sample
// from the ADC and adds it to a running accumulator. Every 256
// samples, the ADC updates and stores its result in the global variable
// <result>. The sampling technique of adding a set of values and
// decimating them (posting results every 256th sample) is called ’accumulate
// and dump.’ It is easy to implement and requires very few resources.
//
// For each power of 4, you gain 1 bit of effective resolution.
// For a factor of 256, gain you 4 bits of resolution: 4^4 = 256.
// Also, to properly scale the result back to 16-bits, perform a right
// shift of 4 bits.
//
// Target: C8051F00x or C8051F01x
// Tool chain: KEIL C51 6.03 / KEIL C51 EVAL version
//

//---
// Includes
//---

#include <stdio.h>

#include <c8051f000.h> // SFR declarations

//---
// 16-bit SFR Definitions for ’F00x, ’F01x
//---

sfr16 DP = 0x82; // data pointer
sfr16 TMR3RL = 0x92; // Timer3 reload value
sfr16 TMR3 = 0x94; // Timer3 counter
sfr16 ADC0 = 0xbe; // ADC0 data
sfr16 ADC0GT = 0xc4; // ADC0 greater than window
sfr16 ADC0LT = 0xc6; // ADC0 less than window
16 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
sfr16 RCAP2 = 0xca; // Timer2 capture/reload
sfr16 T2 = 0xcc; // Timer2
sfr16 DAC0 = 0xd2; // DAC0 data
sfr16 DAC1 = 0xd5; // DAC1 data

//---
// Global CONSTANTS
//---

#define SYSCLK 18432000 // SYSCLK frequency in Hz
#define BAUDRATE 115200 // Baud rate of UART in bps
#define SAMPLE_RATE 100000 // Sample frequency in Hz

#define LED P1.6 // LED=’1’ means ON

//---
// Function PROTOTYPES
//---

void SYSCLK_Init (void);
void PORT_Init (void);
void UART_Init (void);
void ADC_Init (void);
void TIMER3_Init (int counts);
void ADC_ISR (void);

//---
// Global VARIABLES
//---

long result; // Output result from oversmapling and
// averaging 256 samples from the ADC for
// 16-bit measurement resolution

//---
// MAIN Routine
//---

void main (void) {
long temp_copy;
int temp_int; // integer portion of temperature
int temp_frac; // fractional portion of temperature (in

// hundredths of a degree)

WDTCN = 0xde; // disable watchdog timer
WDTCN = 0xad;

SYSCLK_Init (); // initialize oscillator
PORT_Init (); // initialize crossbar and GPIO
UART_Init (); // initialize UART
TIMER3_Init (SYSCLK/SAMPLE_RATE); // initialize Timer3 to overflow at

// sample rate
ADC_Init (); // init ADC

ADCEN = 1; // enable ADC
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 17

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
result = 0L; // initialize temperature variable

EA = 1; // Enable global interrupts

while (1) {
temp_copy = result; // Get most recent sample to convert

// the ADC code to a temperature
temp_copy -= 0xa381; // correct offset to 0deg, 0V
temp_copy *= 0x01a9; // 2.86mV/degree C
temp_copy *= 100; // convert result to 100ths of a degree C
temp_copy = temp_copy >> 16; // divide by 2^16
temp_int = temp_copy / 100; // Seperate integer and fractional components
temp_frac = temp_copy - (100 * temp_int);
printf (“Temperature is %d.%d\n”, (int) temp_int, (int) temp_frac);

}
}

//---
// Initialization Subroutines
//---

//---
// SYSCLK_Init
//---
//
// This routine initializes the system clock to use an 18.432MHz crystal
// as its clock source.
//
void SYSCLK_Init (void)
{

int i; // delay counter

OSCXCN = 0x67; // start external oscillator with
// 18.432MHz crystal

for (i=0; i < 256; i++) ; // XTLVLD blanking interval (>1ms)

while (!(OSCXCN & 0x80)) ; // Wait for crystal osc. to settle

OSCICN = 0x88; // select external oscillator as SYSCLK
// source and enable missing clock
// detector

}

//---
// PORT_Init
//---
//
// Configure the Crossbar and GPIO ports
//
void PORT_Init (void)
{

XBR0 = 0x07; // Enable I2C, SPI, and UART
XBR1 = 0x00;
XBR2 = 0x40; // Enable crossbar and weak pull-ups
PRT0CF |= 0xff; // enable all outputs on P0 as push-pull

// push-pull; let xbar configure pins
18 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
// as inputs as necessary
PRT1CF |= 0x40; // enable P1.6 (LED) as push-pull output

}

//---
// PORT_Init
//---
//
// Configure the UART using Timer1, for <baudrate> and 8-N-1.
//
void UART_Init (void)
{

SCON = 0x50; // SCON: mode 1, 8-bit UART, enable RX
TMOD = 0x20; // TMOD: timer 1, mode 2, 8-bit reload
TH1 = -(SYSCLK/BAUDRATE/16); // set Timer1 reload value for baudrate
TR1 = 1; // start Timer1
CKCON |= 0x10; // Timer1 uses sysclk as time base
PCON |= 0x80; // SMOD = 1
TI = 1; // Indicate TX ready

}

//---
// ADC_Init
//---
//
// Configure A/D converter to use Timer3 overflows as conversion source, to
// generate an interrupt on conversion complete, and to use right-justified
// output mode. Enables ADC end of conversion interrupt. Leaves ADC disabled.
//
void ADC_Init (void)
{

ADC0CN = 0x04; // ADC disabled; normal tracking
// mode; ADC conversions are initiated
// on overflow of Timer3; ADC data is
// right-justified

REF0CN = 0x07; // enable temp sensor, on-chip VREF,
// and VREF output buffer

AMX0SL = 0x0f; // Select TEMP sens as ADC mux output
ADC0CF = 0x61; // ADC conversion clock = sysclk/8

EIE2 |= 0x02; // enable ADC interrupts
}

//---
// TIMER3_Init
//---
//
// Configure Timer3 to auto-reload at interval specified by <counts> (no
// interrupt generated) using SYSCLK as its time base.
//
void TIMER3_Init (int counts)
{

TMR3CN = 0x02; // Stop Timer3; Clear TF3;
// use SYSCLK as timebase

TMR3RL = -counts; // Init reload values
TMR3 = 0xffff; // set to reload immediately
EIE2 &= ~0x01; // disable Timer3 interrupts
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 19

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
TMR3CN |= 0x04; // start Timer3
}

//---
// Interrupt Service Routines
//---

//---
// ADC_ISR
//---
//
// ADC end-of-conversion ISR
// Here we take the ADC sample, add it to a running total <accumulator>, and
// decrement our local decimation counter <int_dec>. When <int_dec> reaches
// zero, we calculate the new value of the global variable <result>,
// which stores the accumulated ADC result.
//
void ADC_isr (void) interrupt 15
{

static unsigned int_dec=256; // integrate/decimate counter
// we post a new result when
// int_dec = 0

static long accumulator=0L; // here’s where we integrate the
// ADC samples

ADCINT = 0; // clear ADC conversion complete
// indicator

accumulator += ADC0; // read ADC value and add to running
// total

int_dec--; // update decimation counter

if (int_dec == 0) { // if zero, then decimate
int_dec = 256; // reset counter
result = accumulator >> 4; // Shift to perform the divide operation
accumulator = 0L; // dump accumulator

}
}

20 AN018 - 1.1 MAY01 © 2001 Cygnal Integrated Products, Inc.

http://www.cygnal.com
http://www.cygnal.com

AN018 - Improving ADC Resolution By Oversampling and Averaging
References
[1] A. Oppenheim and R. Schafer, Discrete-
Time Signal Processing, New Jersey: Prentice
Hall, 1999 ed.

[2] J. Lis, Noise Histogram Analysis, Cirrus
Logic Application Note AN37

[3] J.C. Candy and G.C. Temes, Oversampling
Methods for A/D and D/A Conversion, IEEE
Transactions on Circuits and Systems, June
1987 (Beginning discussion on the effects of
oversampling on in-band noise).
© 2001 Cygnal Integrated Products, Inc. AN018 - 1.1 MAY01 21

http://www.cygnal.com
http://www.cygnal.com

	Introduction
	Figure 1. Oversampling and Averaging to Increase Measurement Resolution By “w” Bits

	Key Points
	Sources of Data Converter Noise

	Increasing the Resolution of an ADC Measurement
	Calculating the Oversampling Requirements To Increase Resolution
	Calculating the Oversampling Requirements To Increase SNR
	When Oversampling and Averaging Will Work

	Example
	Resolution Improvement
	12-bit Temperature Resolution
	16-Bit Temperature Resolution
	Reduced Throughput

	Summary

	Appendix A - Theory of Noise and Oversampling
	How Oversampling and Averaging Improves Performance
	How Oversampling Affects In- Band Noise
	The Relationship Between Oversampling and Increased Resolution
	Noise Analysis
	Figure 2. Frequency Profiles of Input Signals Sampled at Nyquist Frequency, Oversampled Frequency...
	Figure 3. Frequency Profile Of Oversampled Signal and an Ideal Low-Pass Filter Removing Noise
	Figure 4. Oversampled Signal After Filter and Downsampled to the Nyquist Frequency Showing Lowere...

	Calculating Signal To Noise Ratio
	Averaging To Increase the Effective Resolution of a dc Measurement
	Applications Measuring a Static Voltage
	Oversampling and Averaging as an Interpolative Filter

	Appendix B - When Oversampling and Averaging Will Work
	Noise Requirements For Effective Oversampling
	Histogram Analysis
	Figure 5. Histogram of ADC samples: dc Input With White Noise
	Figure 6. Histogram of ADC Samples Not Optimal For Oversampling and Averaging Techniques

	Appendix C - Example Code
	References

