
Certain complex systems can generate phenomena
that classical theory cannot explain. Their behavior
may be represented by a simplified scheme that com-
bines both a deterministic and stochastic source [8],

[12], [15]. To that end, researchers are using noise in various
systems to enhance their function without altering the system.

Noise-Added Systems
These studies focus on the behavior of bistable, thresh-
old-based systems that are forced by both a periodic signal,

with an amplitude lower than the system threshold, and a sto-
chastic component. The interaction between the two signals
transforms the system function at the same frequency of the
periodic forcing signal. The phenomenon includes an in-
creased signal-to-noise ratio and a peak in the output signal
spectrum at the frequency of the forcing signal, corresponding
to an optimal noise level. This is called stochastic resonance (SR)
[9], [14].

The SR phenomenon can be interpreted as a reduction in
threshold. Fig. 1(a) illustrates the case of a Schmitt trigger. SR
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is completely different from the resonance found in linear sys-
tems. The most obvious difference is the frequency of reso-
nance; the resonance frequency in linear systems depends on
the structural properties of the system, while the resonance
frequency in SR is determined by the periodic signal.

Dithering is another noise-added technique normally used
to enhance resolution in A/D converters by altering the
quantization error spectrum [10], [18]. Although other tech-
niques, such as oversampling, have been used to enhance the
behavior of these devices, dithering has proven most effective
when considering cost versus performance. By taking the con-

cept to extremes, you can interpret the increase in the resolu-
tion of an A/D converter as linearizing its transfer function.
Consequently, stochastic modulation techniques can linearize
discrete systems. Unlike bistable systems, an improvement in
the performance of quasilinear systems is achieved by modi-
fying the shape of the transfer function.

In systems with two or more stable states, stochastic modu-
lation techniques reduce the threshold, but the topology of the
characteristic itself is left unaltered. In linear systems, on the
other hand, action on the nonlinear areas involves changing
the type of the original system.

Stochastic modulation can improve the performance of
measurement devices, such as sensors affected by threshold
error [3]. Fig. 1(b) illustrates an example of improved perfor-
mance through stochastic modulation.

Brownian Motion
A Brownian System is an example of noise-added theory ap-
plied to various natural phenomena and can model some
physical devices [11], [14]. Several studies have emphasized
the features of this phenomenon and its complexity arising
from sensitivity to structural parameters [17]. Understanding
how to optimize the behavior of this type of system in the
presence of noise represents a significant advance in the field
of noise-added systems. Brownian motion describes the
movement of a particle that is subjected to collisions and other
forces in a fluid. Macroscopically, the position x(t) of the parti-
cle can be modeled as a potential V(x) that is subjected to fluc-
tuation and dissipation along with a deterministic forcing
term. A Brownian system exhibits very interesting behavior,
SR, when V(x) is a quartic double well potential, as shown in
Fig. 2(a) [11].

If the deterministic forcing term is set to zero (the particle is
only subjected to fluctuation forces), transitions between the
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Fig. 1. (a) The system threshold (solid line) can be reduced (dotted line) by
adding a suitable level of noise to the system. (b) A system with a linear I/O
presents a threshold error in the proximity of null input signal amplitudes. The
solid line represents this situation. The dotted line represents the ideal effect
of noise linearization.
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Fig. 2. (a) The quartic double well; (b) the state diagram when a suitable
forcing signal larger than the threshold is applied; (c) the state diagram when a
subthreshold forcing signal is applied.
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two potential wells occur at a rate given by Kramers Rate (RK)
and they depend on both the noise amplitude and some sys-
tem parameters [11].

In the presence of a strong periodic forcing signal, with fre-
quency ν=1/T, the potential tilts back and forth, alternately
raising and lowering the potential barrier of the right and the
left wells. As a result, the particle rolls periodically from one
potential well into the other one with the same frequency as
the forcing signal. The state behavior of this system is shown
in Fig. 2(b).

In the presence of a weak periodic signal, the particle
should lie in a narrow range (attractor) of one state that is se-
lected by the initial conditions, as illustrated in Fig. 2(c). In this
case, a suitable noise signal could force the particle to roll from
one potential well into the other. The periodic forcing syn-
chronizes this transaction, which is the SR phenomenon.

This discussion implies that the performance of some sys-
tems may improve by adding a suitable quantity of noise. Fur-
thermore, these techniques may optimize the behavior of
systems operating in noisy environments by adapting and de-
signing the system so that performance improves in the pres-
ence of noisy sources with well-defined characteristics. The
remainder of the article will cover some new results that ex-
ploit the noise generation and the optimal noise tuning in
noise-added systems.

Dithering versus SR
What is the difference between stochas-
tic resonance and dithering? They are
both noise-added techniques; they both
enhance the performance of a system by
reducing the threshold error; and they
both require the optimization of certain
parameters. So why use two names? Sto-
chastic resonance is a phenomenon that
is observed in the natural world,
whereas dithering is an artificial tech-
nique. Stochastic resonance is a condi-
tion peculiar to bistable systems; it can
reduce the system threshold (and, thus,
render the system sensitive to forcing
signals with an amplitude lower than
the threshold) without altering the sys-
tem’s characteristics (i.e., the system re-
mains bistable). Dithering, on the other
hand, can increase the resolution of sys-
tems that have specific nonlinearities.
Dithering linearizes the transfer function
of the system near the nonlinearity, thus
modifying the nature of the system (a sys-
tem that was bistable, at least in the part
affected by nonlinearity, is linearized).
Therefore, reducing the threshold of a
system is quite different from linearizing
a part of the transfer function.

Dithering works on systems that are
static around the set point. Optimization
does not take into account the system’s
time constants. Stochastic resonance, on
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Fig. 4. Data density plot and FFT of a Gaussian-like signal generated by the
Chua circuit.
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the other hand, is a phenomenon typical of both static systems
(e.g., a trigger), where it is important to consider the forcing
signal frequency, and dynamic systems (e.g., Brownian mo-
tion), where the system’s time constants also play a role. (Re-
call the matching condition, where the characteristic
frequencies of the system appear.)

Noise Generation
The study of noise-added systems requires the use of a suit-
able noise generator. Sometimes laboratory equipment can be
dedicated to generating noise. Other times, applications re-
quire a simple, low-cost generator.

The Chua circuit is a simple, well-known nonlinear system
for generating signals with complex dynamics [13]. By vary-
ing its parameters, it can produce completely different behav-
iors, ranging from periodic to chaotic. For our needs in
studying SR, it can provide a stochastic signal with desirable
properties [7].

Fig. 3 illustrates a Chua circuit and the characteristic of its
nonlinear resistor. Fig. 4 shows an example data density plot
and the FFT of a Gaussian-like signal experimentally obtained
by using this circuit [5], [13], [16].

Noise Tuning
Identifying the optimal standard deviation, σopt, for noise re-
mains the main problem in dealing with noise-added systems.
Generally, maximizing the signal-to-noise ratio will provide
the appropriate value of σopt [9].

The drawbacks of this approach are:
◗ The performance of the system cannot be assured. For

example, the duty cycle of the output signal in a bistable
system can not be fixed by setting the noise amplitude.

◗ Constraints on the system behavior (e.g., output fluctua-
tion in sensors) cannot be taken into account. Noise-
modulation techniques reliably reduce the physical
threshold of some electronic devices (comparators, sen-
sors), but raise the minimum noise level.

◗ When system parameter fluctuations occur, noise ampli-
tude tuning is very complex, and real-time control of the
variance value is not possible.

◗ The influence of external parameters on system perfor-
mance cannot be taken into account.

An optimization of a more general index than the sig-
nal-to-noise ratio can counter these drawbacks to detecting
the optimal noise variance [1], [2]. The index should include
system performance (e.g., system switching times, its output
duty cycle) and constraints (e.g., allowed output fluctuation).

Fig. 5 gives a schematic representation of this general ap-
proach. The main idea is to define, for each class of systems, a
function W to be optimized; the signal-to-noise ratio being but
one of the options. For stochastic systems, the analytical opti-
mization of the index W will lead to a general relationship be-
tween the system parameters and the optimal standard
deviation, σopt, that represents the optimal modulation for the
noise level [2].

A probabilistic approach can obtain both a suitable form of
the noise modulation and a map giving σopt as a function of the
system parameter [2]. An algorithm generates the map that
screens the parameters of amplitude, A, and frequency, ν, and
obtains the corresponding σopt values.

The deductive process, which gives rise to this procedure,
is of general validity and can be applied to quasilinear sys-
tems. The main differences can be summarized as follows:

◗ Quasilinear devices are less affected by parametric vari-
ations, and implementation of the control strategy is less
complex than bistable systems.

◗ Quasilinear systems require a complex post-processing
stage. In bistable systems there is no post-processing
stage because such systems naturally filter the high-fre-
quency components. In quasilinear systems, on the other
hand, this section is necessary to ensure that the undesir-
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Fig. 6. (a) The iso-amplitude map; (b) the trigger output for two noise
standard deviation values (σ = 515 mV and σ = 530 mV) due to a forcing signal
with a frequency of 1 KHz and amplitude 500 mV.



able noise components that the system transfers to the
output will be filtered out.

Applications
We have given an overview of noise techniques that improve
system performance. Now, we present some applications: the
optimization of noise tuning in a Schmitt Trigger, the thresh-
old linearization of an infrared (IR) sensor, and the optimal
parameter tuning of a Brownian system subjected to stochas-
tic fluctuation.

Threshold Reduction in a Schmitt Trigger
It should be noted that the Schmitt Trigger represents a proto-
type for several physical devices. In particular, it models the
behavior of some two-state sensing devices for which the hys-
teresis has been included to avoid unsuitable output caused
by undesirable input signal fluctuations. Changing the hyster-
esis width (the system threshold value) by forcing a suitable
level of noise into the device rather than by changing its physi-
cal structure, is of great interest when the same device must
operate in different ranges.

We experimentally validated the noise optimization for a
bistable system by applying both a noise-forcing signal and a
periodic signal whose amplitude, A, was lower than the sys-
tem threshold. Fig. 6(a) shows the iso-amplitude curves for
the experimental trials with a bistable Schmitt Trigger that
had a threshold of 700 mV [6]. The black circles, in the heavy
line, show the minimum values of the input signal amplitude,
allowing for system commutations (changing from one region
operation to another) and the corresponding minimum noise
variance evaluated at each forcing frequency. The thick line
divides the map into two zones. For each forcing frequency,
the amplitude of the forcing signal that allows for system com-
mutation must be sought in the left zone of the map; the corre-
sponding reading in the variance axis gives the minimum

noise variance value [6]. Fig. 6(b) shows a limit condition of
commutation as an example.

We adopted a simple form of the control law for the
noise-tuning system and obtained good agreement between
the original and the estimated data [6]. Fig. 7 shows the setup
of the experimental tuning system.

IR Sensor for Measuring Distance
Sensors for distance measurement have widespread commer-
cial applications. The balance between cost and performance
are the main factors determining the market for these devices.
Noise-added techniques can improve the performance of
low-cost devices.

A good example is an IR optical sensor used for distance
measurement. IR optical sensors generally comprise an emit-
ter and a photo-detector (photodiode or phototransistor). By
forcing the emitter with a deterministic signal or a continuous
voltage, the intensity of the radiation generated is propor-
tional to the amplitude of the forced signal. The wave reflected
by the target hits the receiving phototransistor and its inten-
sity basically depends on the distance of the target. By mea-

28 IEEE Instrumentation & Measurement Magazine March 2001

Fig. 7. Experimental setup of the noise tuning system for the Schmitt Trigger.
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suring the intensity of the wave received, it is possible to
calculate the distance of the target.

The setup illustrated in Fig. 8(a) tested noise modulation in
an IR sensor. The measurement system is a trolley that moves
freely along a track, a target mounted on the trolley, and an IR
sensor. A reference index on the target indicates its distance
from the sensor. The transmission and reception sensors are
mounted at the ends of the track and lie on a surface parallel to
the target. An amplification and a filtering stage are both re-
quired for conditioning the sensor output [Fig. 8(b)].

The target was an opaque, white reflecting surface. A forc-
ing sinusoid with an amplitude of 6 Vpp and a frequency of 20
KHz characterized the transfer function of the system, as
shown in Fig. 9(a). Without noise, the maximum range was 18
cm, which represents the physical threshold, Sf, of the system.

Then, we added uniform noise to the sinusoidal forcing
signal and assessed the behavior of the IR sensor [3]. Fig. 10
shows some calibration curves for different values of the noise
level. When stochastic signals are used, whose standard devi-
ations are lower than the values shown in Fig. 10, the system
behaves more or less as it does with no added noise. When the
standard deviation is high, it causes excessive uncertainty in
the measurements and saturation of the output signal.

Stochastic modulation increases the sensor’s sensitivity in
the outlying area of the field of measurement compared to
nominal. Optimal values of the standard deviation improve
the maximum measured distance from 18 to 24 cm [3].

Besides range, the uncertainty associated with measure-
ments is important in assessing the performance of the sensor.
Fig. 9(b) gives the calibration diagram for the noise-added IR
sensor. We limited imprecision to 3σ. The IR sensor, with and
without added noise, gives comparable uncertainty bands.

Parameter Optimization in
QDW-Type Systems
Many applications must work with very-low-amplitude sig-
nals. Some devices can not easily process such signals due to
both intrinsic threshold error and background noise. Threshold
error desensitizes the device to low-amplitude signals while
background noise makes it difficult to manipulate signals.

Let’s consider a Brownian system with a threshold mech-
anism modeled by a quartic-double-well (QDW) potential
presented in Fig. 2(a). This system is very interesting—it
models several natural phenomena and physical devices,
such as piezoelectric sensors and SQUIDD detectors. By
shaping a QDW system instead of tuning the noise level, we
can make a system sensitive to an underthreshold signal
modulated by a stochastic signal. This is important in design-
ing devices that operate in an environment where the charac-
teristics of both the noise and the deterministic forcing
signals are fixed by the application.

We change the structural parameters of a system to move it
into the SR condition when it is forced by an unknown peri-
odic signal modulated by white Gaussian noise with un-
known statistical properties [4]. The optimal values of system

parameters allow the system to switch with the same fre-
quency as the forcing signal in the SR condition.

Since the characteristic of the forcing signal is unknown,
analytical procedures for fixing the system parameters for SR
and the best performance of the device are not straightfor-
ward. Hence, another index to be optimized is defined as fol-
lows:

◗ When all of the stochastic system parameters are fixed,
the output power spectrum of the system will show a
peak corresponding to the forcing frequency.

◗ This peak will be largest for optimal values of the system
parameters, indicating SR.

The optimization procedure starts with the computation of
a QDW system’s output for a large set of values for the system
parameters when the system is forced with the two signals.
The algorithm computes the frequency corresponding to the
peak value for each output spectrum, then it computes the dis-
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tribution of these frequencies and chooses the frequency with
the maximum number of occurrences. Experimentally, the
maximum value is the forcing frequency, which confirms sys-
tem sensitivity to very-low-amplitude (underthreshold) forc-
ing signal.

We developed a virtual instrument in LabVIEW to simu-
late the selection algorithm (Fig. 11). The instrument is di-
vided into two sections. The top section is dedicated to the
input/output data actions while the bottom section is devoted
to the graphic output. In the data input section, the user must
insert the parameters of the periodic forcing signal, both am-
plitude and frequency, and the stochastic signal.

The top section of the graphic area shows the power spec-
trum, the correlation map, and the statistical distribution of
the signal. This approach gives away no information on the
forcing signal frequency. The middle section presents the
spectra of the QDW system output when forced by the im-
posed signals (deterministic and stochastic) for a large set of
the system parameters. The bottom section presents the spec-
tra of the output showing the maximum in a narrow range of
the frequencies selected by the algorithm. The top right dialog
box shows the detected frequency; in the test mode, it can be

compared with the input frequency given in the data section
to verify the efficiency of the tool.

We have run a large number of trials to test the tool and found
good performance. The data density plot of the residuals between
the frequency detected by the algorithm and the frequency of the
forced deterministic signal confirm the performance.

Summary
We have shown the possibility of improving the performance
of several system classes in the presence of noise. The strategy
depends on the application. Stochastic resonance can reduce
threshold while suitable noise modulation can linearize
thresholds.
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